New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bi3 | GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
bi3 | ⊢ ((φ → ψ) → ((ψ → φ) → (φ ↔ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 177 | . . 3 ⊢ ¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) | |
2 | simprim 142 | . . 3 ⊢ (¬ (((φ ↔ ψ) → ¬ ((φ → ψ) → ¬ (ψ → φ))) → ¬ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) → (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (¬ ((φ → ψ) → ¬ (ψ → φ)) → (φ ↔ ψ)) |
4 | 3 | expi 141 | 1 ⊢ ((φ → ψ) → ((ψ → φ) → (φ ↔ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: impbii 180 impbidd 181 dfbi1 184 bisym 281 |
Copyright terms: Public domain | W3C validator |