| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bi3ant | GIF version | ||
| Description: Construct a bi-conditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| bi3ant.1 | ⊢ (φ → (ψ → χ)) |
| Ref | Expression |
|---|---|
| bi3ant | ⊢ (((θ → τ) → φ) → (((τ → θ) → ψ) → ((θ ↔ τ) → χ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi1 178 | . . 3 ⊢ ((θ ↔ τ) → (θ → τ)) | |
| 2 | 1 | imim1i 54 | . 2 ⊢ (((θ → τ) → φ) → ((θ ↔ τ) → φ)) |
| 3 | bi2 189 | . . 3 ⊢ ((θ ↔ τ) → (τ → θ)) | |
| 4 | 3 | imim1i 54 | . 2 ⊢ (((τ → θ) → ψ) → ((θ ↔ τ) → ψ)) |
| 5 | bi3ant.1 | . . 3 ⊢ (φ → (ψ → χ)) | |
| 6 | 5 | imim3i 55 | . 2 ⊢ (((θ ↔ τ) → φ) → (((θ ↔ τ) → ψ) → ((θ ↔ τ) → χ))) |
| 7 | 2, 4, 6 | syl2im 34 | 1 ⊢ (((θ → τ) → φ) → (((τ → θ) → ψ) → ((θ ↔ τ) → χ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bisym 281 |
| Copyright terms: Public domain | W3C validator |