New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ccase2 | GIF version |
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
ccase2.1 | ⊢ ((φ ∧ ψ) → τ) |
ccase2.2 | ⊢ (χ → τ) |
ccase2.3 | ⊢ (θ → τ) |
Ref | Expression |
---|---|
ccase2 | ⊢ (((φ ∨ χ) ∧ (ψ ∨ θ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase2.1 | . 2 ⊢ ((φ ∧ ψ) → τ) | |
2 | ccase2.2 | . . 3 ⊢ (χ → τ) | |
3 | 2 | adantr 451 | . 2 ⊢ ((χ ∧ ψ) → τ) |
4 | ccase2.3 | . . 3 ⊢ (θ → τ) | |
5 | 4 | adantl 452 | . 2 ⊢ ((φ ∧ θ) → τ) |
6 | 4 | adantl 452 | . 2 ⊢ ((χ ∧ θ) → τ) |
7 | 1, 3, 5, 6 | ccase 912 | 1 ⊢ (((φ ∨ χ) ∧ (ψ ∨ θ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |