NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ccase2 GIF version

Theorem ccase2 914
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
ccase2.1 ((φ ψ) → τ)
ccase2.2 (χτ)
ccase2.3 (θτ)
Assertion
Ref Expression
ccase2 (((φ χ) (ψ θ)) → τ)

Proof of Theorem ccase2
StepHypRef Expression
1 ccase2.1 . 2 ((φ ψ) → τ)
2 ccase2.2 . . 3 (χτ)
32adantr 451 . 2 ((χ ψ) → τ)
4 ccase2.3 . . 3 (θτ)
54adantl 452 . 2 ((φ θ) → τ)
64adantl 452 . 2 ((χ θ) → τ)
71, 3, 5, 6ccase 912 1 (((φ χ) (ψ θ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator