New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ccase | GIF version |
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.) |
Ref | Expression |
---|---|
ccase.1 | ⊢ ((φ ∧ ψ) → τ) |
ccase.2 | ⊢ ((χ ∧ ψ) → τ) |
ccase.3 | ⊢ ((φ ∧ θ) → τ) |
ccase.4 | ⊢ ((χ ∧ θ) → τ) |
Ref | Expression |
---|---|
ccase | ⊢ (((φ ∨ χ) ∧ (ψ ∨ θ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccase.1 | . . 3 ⊢ ((φ ∧ ψ) → τ) | |
2 | ccase.2 | . . 3 ⊢ ((χ ∧ ψ) → τ) | |
3 | 1, 2 | jaoian 759 | . 2 ⊢ (((φ ∨ χ) ∧ ψ) → τ) |
4 | ccase.3 | . . 3 ⊢ ((φ ∧ θ) → τ) | |
5 | ccase.4 | . . 3 ⊢ ((χ ∧ θ) → τ) | |
6 | 4, 5 | jaoian 759 | . 2 ⊢ (((φ ∨ χ) ∧ θ) → τ) |
7 | 3, 6 | jaodan 760 | 1 ⊢ (((φ ∨ χ) ∧ (ψ ∨ θ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: ccased 913 ccase2 914 undif3 3516 |
Copyright terms: Public domain | W3C validator |