| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > condan | GIF version | ||
| Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| condan.1 | ⊢ ((φ ∧ ¬ ψ) → χ) |
| condan.2 | ⊢ ((φ ∧ ¬ ψ) → ¬ χ) |
| Ref | Expression |
|---|---|
| condan | ⊢ (φ → ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | condan.1 | . . 3 ⊢ ((φ ∧ ¬ ψ) → χ) | |
| 2 | condan.2 | . . 3 ⊢ ((φ ∧ ¬ ψ) → ¬ χ) | |
| 3 | 1, 2 | pm2.65da 559 | . 2 ⊢ (φ → ¬ ¬ ψ) |
| 4 | notnot2 104 | . 2 ⊢ (¬ ¬ ψ → ψ) | |
| 5 | 3, 4 | syl 15 | 1 ⊢ (φ → ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |