NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  condan GIF version

Theorem condan 769
Description: Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
Hypotheses
Ref Expression
condan.1 ((φ ¬ ψ) → χ)
condan.2 ((φ ¬ ψ) → ¬ χ)
Assertion
Ref Expression
condan (φψ)

Proof of Theorem condan
StepHypRef Expression
1 condan.1 . . 3 ((φ ¬ ψ) → χ)
2 condan.2 . . 3 ((φ ¬ ψ) → ¬ χ)
31, 2pm2.65da 559 . 2 (φ → ¬ ¬ ψ)
4 notnot2 104 . 2 (¬ ¬ ψψ)
53, 4syl 15 1 (φψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator