New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm2.65da | GIF version |
Description: Deduction rule for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
Ref | Expression |
---|---|
pm2.65da.1 | ⊢ ((φ ∧ ψ) → χ) |
pm2.65da.2 | ⊢ ((φ ∧ ψ) → ¬ χ) |
Ref | Expression |
---|---|
pm2.65da | ⊢ (φ → ¬ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65da.1 | . . 3 ⊢ ((φ ∧ ψ) → χ) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → (ψ → χ)) |
3 | pm2.65da.2 | . . 3 ⊢ ((φ ∧ ψ) → ¬ χ) | |
4 | 3 | ex 423 | . 2 ⊢ (φ → (ψ → ¬ χ)) |
5 | 2, 4 | pm2.65d 166 | 1 ⊢ (φ → ¬ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: condan 769 |
Copyright terms: Public domain | W3C validator |