New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-addcfn | GIF version |
Description: Define the function representing cardinal sum. (Contributed by SF, 9-Feb-2015.) |
Ref | Expression |
---|---|
df-addcfn | ⊢ AddC = (x ∈ V, y ∈ V ↦ (x +c y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caddcfn 5746 | . 2 class AddC | |
2 | vx | . . 3 setvar x | |
3 | vy | . . 3 setvar y | |
4 | cvv 2860 | . . 3 class V | |
5 | 2 | cv 1641 | . . . 4 class x |
6 | 3 | cv 1641 | . . . 4 class y |
7 | 5, 6 | cplc 4376 | . . 3 class (x +c y) |
8 | 2, 3, 4, 4, 7 | cmpt2 5654 | . 2 class (x ∈ V, y ∈ V ↦ (x +c y)) |
9 | 1, 8 | wceq 1642 | 1 wff AddC = (x ∈ V, y ∈ V ↦ (x +c y)) |
Colors of variables: wff setvar class |
This definition is referenced by: addcfnex 5825 addcfn 5826 braddcfn 5827 |
Copyright terms: Public domain | W3C validator |