New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > braddcfn | GIF version |
Description: Binary relationship form of the AddC function. (Contributed by SF, 2-Mar-2015.) |
Ref | Expression |
---|---|
braddcfn.1 | ⊢ A ∈ V |
braddcfn.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
braddcfn | ⊢ (〈A, B〉 AddC C ↔ (A +c B) = C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcfn 5826 | . . 3 ⊢ AddC Fn V | |
2 | braddcfn.1 | . . . 4 ⊢ A ∈ V | |
3 | braddcfn.2 | . . . 4 ⊢ B ∈ V | |
4 | 2, 3 | opex 4589 | . . 3 ⊢ 〈A, B〉 ∈ V |
5 | fnbrfvb 5359 | . . 3 ⊢ (( AddC Fn V ∧ 〈A, B〉 ∈ V) → (( AddC ‘〈A, B〉) = C ↔ 〈A, B〉 AddC C)) | |
6 | 1, 4, 5 | mp2an 653 | . 2 ⊢ (( AddC ‘〈A, B〉) = C ↔ 〈A, B〉 AddC C) |
7 | df-ov 5527 | . . . 4 ⊢ (A AddC B) = ( AddC ‘〈A, B〉) | |
8 | addceq1 4384 | . . . . . 6 ⊢ (x = A → (x +c y) = (A +c y)) | |
9 | addceq2 4385 | . . . . . 6 ⊢ (y = B → (A +c y) = (A +c B)) | |
10 | df-addcfn 5747 | . . . . . 6 ⊢ AddC = (x ∈ V, y ∈ V ↦ (x +c y)) | |
11 | 2, 3 | addcex 4395 | . . . . . 6 ⊢ (A +c B) ∈ V |
12 | 8, 9, 10, 11 | ovmpt2 5717 | . . . . 5 ⊢ ((A ∈ V ∧ B ∈ V) → (A AddC B) = (A +c B)) |
13 | 2, 3, 12 | mp2an 653 | . . . 4 ⊢ (A AddC B) = (A +c B) |
14 | 7, 13 | eqtr3i 2375 | . . 3 ⊢ ( AddC ‘〈A, B〉) = (A +c B) |
15 | 14 | eqeq1i 2360 | . 2 ⊢ (( AddC ‘〈A, B〉) = C ↔ (A +c B) = C) |
16 | 6, 15 | bitr3i 242 | 1 ⊢ (〈A, B〉 AddC C ↔ (A +c B) = C) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 Vcvv 2860 +c cplc 4376 〈cop 4562 class class class wbr 4640 Fn wfn 4777 ‘cfv 4782 (class class class)co 5526 AddC caddcfn 5746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-addcfn 5747 |
This theorem is referenced by: csucex 6260 addccan2nclem1 6264 nncdiv3lem1 6276 nncdiv3lem2 6277 nnc3n3p1 6279 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |