NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addcfnex GIF version

Theorem addcfnex 5825
Description: The cardinal addition function exists. (Contributed by SF, 12-Feb-2015.)
Assertion
Ref Expression
addcfnex AddC V

Proof of Theorem addcfnex
Dummy variables x y z a b p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-addcfn 5747 . . 3 AddC = (x V, y V (x +c y))
2 elin 3220 . . . . . . . 8 ({b}, {z}, x, y ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) ↔ ({b}, {z}, x, y Ins2 Ins2 S {b}, {z}, x, y Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)))
3 snex 4112 . . . . . . . . . . 11 {z} V
43otelins2 5792 . . . . . . . . . 10 ({b}, {z}, x, y Ins2 Ins2 S {b}, x, y Ins2 S )
5 vex 2863 . . . . . . . . . . 11 x V
65otelins2 5792 . . . . . . . . . 10 ({b}, x, y Ins2 S {b}, y S )
7 vex 2863 . . . . . . . . . . 11 b V
8 vex 2863 . . . . . . . . . . 11 y V
97, 8opelssetsn 4761 . . . . . . . . . 10 ({b}, y S b y)
104, 6, 93bitri 262 . . . . . . . . 9 ({b}, {z}, x, y Ins2 Ins2 S b y)
118oqelins4 5795 . . . . . . . . . 10 ({b}, {z}, x, y Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) ↔ {b}, {z}, x (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c))
12 elin 3220 . . . . . . . . . . . . 13 ({a}, {b}, {z}, x ( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) ↔ ({a}, {b}, {z}, x Ins2 Ins2 S {a}, {b}, {z}, x Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))))
13 snex 4112 . . . . . . . . . . . . . . . 16 {b} V
1413otelins2 5792 . . . . . . . . . . . . . . 15 ({a}, {b}, {z}, x Ins2 Ins2 S {a}, {z}, x Ins2 S )
153otelins2 5792 . . . . . . . . . . . . . . 15 ({a}, {z}, x Ins2 S {a}, x S )
16 vex 2863 . . . . . . . . . . . . . . . 16 a V
1716, 5opelssetsn 4761 . . . . . . . . . . . . . . 15 ({a}, x S a x)
1814, 15, 173bitri 262 . . . . . . . . . . . . . 14 ({a}, {b}, {z}, x Ins2 Ins2 S a x)
195oqelins4 5795 . . . . . . . . . . . . . . 15 ({a}, {b}, {z}, x Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ {a}, {b}, {z} SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )))
20 vex 2863 . . . . . . . . . . . . . . . 16 z V
2116, 7, 20otsnelsi3 5806 . . . . . . . . . . . . . . 15 ({a}, {b}, {z} SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ a, b, z ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )))
22 elin 3220 . . . . . . . . . . . . . . . 16 (a, b, z ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ (a, b, z Ins3 Disj a, b, z (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )))
2320otelins3 5793 . . . . . . . . . . . . . . . . . 18 (a, b, z Ins3 Disja, b Disj )
24 df-br 4641 . . . . . . . . . . . . . . . . . 18 (a Disj ba, b Disj )
2516, 7brdisj 5823 . . . . . . . . . . . . . . . . . 18 (a Disj b ↔ (ab) = )
2623, 24, 253bitr2i 264 . . . . . . . . . . . . . . . . 17 (a, b, z Ins3 Disj ↔ (ab) = )
27 trtxp 5782 . . . . . . . . . . . . . . . . . . . . . . 23 (p((2nd 1st ) ⊗ 2nd )b, z ↔ (p(2nd 1st )b p2nd z))
2827anbi2i 675 . . . . . . . . . . . . . . . . . . . . . 22 ((p(1st 1st )a p((2nd 1st ) ⊗ 2nd )b, z) ↔ (p(1st 1st )a (p(2nd 1st )b p2nd z)))
29 trtxp 5782 . . . . . . . . . . . . . . . . . . . . . 22 (p((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))a, b, z ↔ (p(1st 1st )a p((2nd 1st ) ⊗ 2nd )b, z))
30 anass 630 . . . . . . . . . . . . . . . . . . . . . 22 (((p(1st 1st )a p(2nd 1st )b) p2nd z) ↔ (p(1st 1st )a (p(2nd 1st )b p2nd z)))
3128, 29, 303bitr4i 268 . . . . . . . . . . . . . . . . . . . . 21 (p((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))a, b, z ↔ ((p(1st 1st )a p(2nd 1st )b) p2nd z))
32 brco 4884 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p(1st 1st )ax(p1st x x1st a))
3316br1st 4859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (x1st ay x = a, y)
3433anbi2i 675 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((p1st x x1st a) ↔ (p1st x y x = a, y))
35 19.42v 1905 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (y(p1st x x = a, y) ↔ (p1st x y x = a, y))
3634, 35bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((p1st x x1st a) ↔ y(p1st x x = a, y))
3736exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (x(p1st x x1st a) ↔ xy(p1st x x = a, y))
38 excom 1741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (xy(p1st x x = a, y) ↔ yx(p1st x x = a, y))
39 exancom 1586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (x(p1st x x = a, y) ↔ x(x = a, y p1st x))
4016, 8opex 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 a, y V
41 breq2 4644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (x = a, y → (p1st xp1st a, y))
4240, 41ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (x(x = a, y p1st x) ↔ p1st a, y)
4339, 42bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (x(p1st x x = a, y) ↔ p1st a, y)
4443exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (yx(p1st x x = a, y) ↔ y p1st a, y)
4538, 44bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (xy(p1st x x = a, y) ↔ y p1st a, y)
4632, 37, 453bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (p(1st 1st )ay p1st a, y)
4746anbi1i 676 . . . . . . . . . . . . . . . . . . . . . . . 24 ((p(1st 1st )a p(2nd 1st )b) ↔ (y p1st a, y p(2nd 1st )b))
48 19.41v 1901 . . . . . . . . . . . . . . . . . . . . . . . 24 (y(p1st a, y p(2nd 1st )b) ↔ (y p1st a, y p(2nd 1st )b))
4940br1st 4859 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (p1st a, yz p = a, y, z)
50 breq1 4643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (p = a, y, z → (p(2nd 1st )ba, y, z(2nd 1st )b))
5140, 20brco1st 5778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (a, y, z(2nd 1st )ba, y2nd b)
5216, 8opbr2nd 5503 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (a, y2nd by = b)
5351, 52bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (a, y, z(2nd 1st )by = b)
5450, 53syl6bb 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (p = a, y, z → (p(2nd 1st )by = b))
5554exlimiv 1634 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (z p = a, y, z → (p(2nd 1st )by = b))
5649, 55sylbi 187 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p1st a, y → (p(2nd 1st )by = b))
5756pm5.32i 618 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((p1st a, y p(2nd 1st )b) ↔ (p1st a, y y = b))
5857exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (y(p1st a, y p(2nd 1st )b) ↔ y(p1st a, y y = b))
59 exancom 1586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (y(p1st a, y y = b) ↔ y(y = b p1st a, y))
6058, 59bitri 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (y(p1st a, y p(2nd 1st )b) ↔ y(y = b p1st a, y))
6147, 48, 603bitr2i 264 . . . . . . . . . . . . . . . . . . . . . . 23 ((p(1st 1st )a p(2nd 1st )b) ↔ y(y = b p1st a, y))
62 opeq2 4580 . . . . . . . . . . . . . . . . . . . . . . . . 25 (y = ba, y = a, b)
6362breq2d 4652 . . . . . . . . . . . . . . . . . . . . . . . 24 (y = b → (p1st a, yp1st a, b))
647, 63ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . 23 (y(y = b p1st a, y) ↔ p1st a, b)
6561, 64bitri 240 . . . . . . . . . . . . . . . . . . . . . 22 ((p(1st 1st )a p(2nd 1st )b) ↔ p1st a, b)
6665anbi1i 676 . . . . . . . . . . . . . . . . . . . . 21 (((p(1st 1st )a p(2nd 1st )b) p2nd z) ↔ (p1st a, b p2nd z))
6716, 7opex 4589 . . . . . . . . . . . . . . . . . . . . . 22 a, b V
6867, 20op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . 21 ((p1st a, b p2nd z) ↔ p = a, b, z)
6931, 66, 683bitri 262 . . . . . . . . . . . . . . . . . . . 20 (p((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))a, b, zp = a, b, z)
7069rexbii 2640 . . . . . . . . . . . . . . . . . . 19 (p Cup p((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))a, b, zp Cup p = a, b, z)
71 elima 4755 . . . . . . . . . . . . . . . . . . 19 (a, b, z (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ) ↔ p Cup p((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd ))a, b, z)
72 risset 2662 . . . . . . . . . . . . . . . . . . 19 (a, b, z Cupp Cup p = a, b, z)
7370, 71, 723bitr4i 268 . . . . . . . . . . . . . . . . . 18 (a, b, z (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ) ↔ a, b, z Cup )
74 df-br 4641 . . . . . . . . . . . . . . . . . 18 (a, b Cup za, b, z Cup )
7516, 7brcup 5816 . . . . . . . . . . . . . . . . . 18 (a, b Cup zz = (ab))
7673, 74, 753bitr2i 264 . . . . . . . . . . . . . . . . 17 (a, b, z (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ) ↔ z = (ab))
7726, 76anbi12i 678 . . . . . . . . . . . . . . . 16 ((a, b, z Ins3 Disj a, b, z (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ ((ab) = z = (ab)))
7822, 77bitri 240 . . . . . . . . . . . . . . 15 (a, b, z ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ ((ab) = z = (ab)))
7919, 21, 783bitri 262 . . . . . . . . . . . . . 14 ({a}, {b}, {z}, x Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) ↔ ((ab) = z = (ab)))
8018, 79anbi12i 678 . . . . . . . . . . . . 13 (({a}, {b}, {z}, x Ins2 Ins2 S {a}, {b}, {z}, x Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) ↔ (a x ((ab) = z = (ab))))
8112, 80bitri 240 . . . . . . . . . . . 12 ({a}, {b}, {z}, x ( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) ↔ (a x ((ab) = z = (ab))))
8281exbii 1582 . . . . . . . . . . 11 (a{a}, {b}, {z}, x ( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) ↔ a(a x ((ab) = z = (ab))))
83 elima1c 4948 . . . . . . . . . . 11 ({b}, {z}, x (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) ↔ a{a}, {b}, {z}, x ( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))))
84 df-rex 2621 . . . . . . . . . . 11 (a x ((ab) = z = (ab)) ↔ a(a x ((ab) = z = (ab))))
8582, 83, 843bitr4i 268 . . . . . . . . . 10 ({b}, {z}, x (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) ↔ a x ((ab) = z = (ab)))
8611, 85bitri 240 . . . . . . . . 9 ({b}, {z}, x, y Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) ↔ a x ((ab) = z = (ab)))
8710, 86anbi12i 678 . . . . . . . 8 (({b}, {z}, x, y Ins2 Ins2 S {b}, {z}, x, y Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) ↔ (b y a x ((ab) = z = (ab))))
882, 87bitri 240 . . . . . . 7 ({b}, {z}, x, y ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) ↔ (b y a x ((ab) = z = (ab))))
8988exbii 1582 . . . . . 6 (b{b}, {z}, x, y ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) ↔ b(b y a x ((ab) = z = (ab))))
90 elima1c 4948 . . . . . 6 ({z}, x, y (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c) ↔ b{b}, {z}, x, y ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)))
91 df-rex 2621 . . . . . 6 (b y a x ((ab) = z = (ab)) ↔ b(b y a x ((ab) = z = (ab))))
9289, 90, 913bitr4i 268 . . . . 5 ({z}, x, y (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c) ↔ b y a x ((ab) = z = (ab)))
93 eladdc 4399 . . . . . 6 (z (x +c y) ↔ a x b y ((ab) = z = (ab)))
94 rexcom 2773 . . . . . 6 (a x b y ((ab) = z = (ab)) ↔ b y a x ((ab) = z = (ab)))
9593, 94bitri 240 . . . . 5 (z (x +c y) ↔ b y a x ((ab) = z = (ab)))
9692, 95bitr4i 243 . . . 4 ({z}, x, y (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c) ↔ z (x +c y))
9796releqmpt2 5810 . . 3 (((V × V) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c)) “ 1c)) = (x V, y V (x +c y))
981, 97eqtr4i 2376 . 2 AddC = (((V × V) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c)) “ 1c))
99 vvex 4110 . . 3 V V
100 ssetex 4745 . . . . . . 7 S V
101100ins2ex 5798 . . . . . 6 Ins2 S V
102101ins2ex 5798 . . . . 5 Ins2 Ins2 S V
103 disjex 5824 . . . . . . . . . . . 12 Disj V
104103ins3ex 5799 . . . . . . . . . . 11 Ins3 Disj V
105 1stex 4740 . . . . . . . . . . . . . 14 1st V
106105, 105coex 4751 . . . . . . . . . . . . 13 (1st 1st ) V
107 2ndex 5113 . . . . . . . . . . . . . . 15 2nd V
108107, 105coex 4751 . . . . . . . . . . . . . 14 (2nd 1st ) V
109108, 107txpex 5786 . . . . . . . . . . . . 13 ((2nd 1st ) ⊗ 2nd ) V
110106, 109txpex 5786 . . . . . . . . . . . 12 ((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) V
111 cupex 5817 . . . . . . . . . . . 12 Cup V
112110, 111imaex 4748 . . . . . . . . . . 11 (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ) V
113104, 112inex 4106 . . . . . . . . . 10 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) V
114113si3ex 5807 . . . . . . . . 9 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) V
115114ins4ex 5800 . . . . . . . 8 Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup )) V
116102, 115inex 4106 . . . . . . 7 ( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) V
117 1cex 4143 . . . . . . 7 1c V
118116, 117imaex 4748 . . . . . 6 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) V
119118ins4ex 5800 . . . . 5 Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c) V
120102, 119inex 4106 . . . 4 ( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) V
121120, 117imaex 4748 . . 3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c) V
12299, 99, 121mpt2exlem 5812 . 2 (((V × V) × V) (( Ins2 S Ins3 (( Ins2 Ins2 S Ins4 (( Ins2 Ins2 S Ins4 SI3 ( Ins3 Disj ∩ (((1st 1st ) ⊗ ((2nd 1st ) ⊗ 2nd )) “ Cup ))) “ 1c)) “ 1c)) “ 1c)) V
12398, 122eqeltri 2423 1 AddC V
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860   cdif 3207  cun 3208  cin 3209  csymdif 3210  c0 3551  {csn 3738  1cc1c 4135   +c cplc 4376  cop 4562   class class class wbr 4640  1st c1st 4718   S csset 4720   ccom 4722  cima 4723   × cxp 4771  2nd c2nd 4784   cmpt2 5654  ctxp 5736   Cup ccup 5742   Disj cdisj 5744   AddC caddcfn 5746   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fo 4794  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-cup 5743  df-disj 5745  df-addcfn 5747  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759
This theorem is referenced by:  csucex  6260  addccan2nclem2  6265  nncdiv3lem2  6277  nnc3n3p1  6279  nchoicelem16  6305
  Copyright terms: Public domain W3C validator