New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-cnv | GIF version |
Description: Define the converse of a class. Definition 9.12 of [Quine] p. 64. We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. Many authors use the postfix superscript "to the minus one." "Converse" is Quine's terminology; some authors call it "inverse," especially when the argument is a function. (Contributed by SF, 5-Jan-2015.) |
Ref | Expression |
---|---|
df-cnv | ⊢ ◡A = {〈x, y〉 ∣ yAx} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | ccnv 4772 | . 2 class ◡A |
3 | vy | . . . . 5 setvar y | |
4 | 3 | cv 1641 | . . . 4 class y |
5 | vx | . . . . 5 setvar x | |
6 | 5 | cv 1641 | . . . 4 class x |
7 | 4, 6, 1 | wbr 4640 | . . 3 wff yAx |
8 | 7, 5, 3 | copab 4623 | . 2 class {〈x, y〉 ∣ yAx} |
9 | 2, 8 | wceq 1642 | 1 wff ◡A = {〈x, y〉 ∣ yAx} |
Colors of variables: wff setvar class |
This definition is referenced by: cnvss 4886 elcnv 4890 nfcnv 4892 brcnv 4893 cnvco 4895 cnvi 5033 cnvun 5034 |
Copyright terms: Public domain | W3C validator |