![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > cnvco | GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by set.mm contributors, 19-Mar-1998.) (Revised by set.mm contributors, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(A ∘ B) = (◡B ∘ ◡A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brco 4883 | . . . 4 ⊢ (x(A ∘ B)y ↔ ∃z(xBz ∧ zAy)) | |
2 | brcnv 4892 | . . . . . . 7 ⊢ (z◡Bx ↔ xBz) | |
3 | brcnv 4892 | . . . . . . 7 ⊢ (y◡Az ↔ zAy) | |
4 | 2, 3 | anbi12i 678 | . . . . . 6 ⊢ ((z◡Bx ∧ y◡Az) ↔ (xBz ∧ zAy)) |
5 | ancom 437 | . . . . . 6 ⊢ ((z◡Bx ∧ y◡Az) ↔ (y◡Az ∧ z◡Bx)) | |
6 | 4, 5 | bitr3i 242 | . . . . 5 ⊢ ((xBz ∧ zAy) ↔ (y◡Az ∧ z◡Bx)) |
7 | 6 | exbii 1582 | . . . 4 ⊢ (∃z(xBz ∧ zAy) ↔ ∃z(y◡Az ∧ z◡Bx)) |
8 | 1, 7 | bitri 240 | . . 3 ⊢ (x(A ∘ B)y ↔ ∃z(y◡Az ∧ z◡Bx)) |
9 | 8 | opabbii 4626 | . 2 ⊢ {〈y, x〉 ∣ x(A ∘ B)y} = {〈y, x〉 ∣ ∃z(y◡Az ∧ z◡Bx)} |
10 | df-cnv 4785 | . 2 ⊢ ◡(A ∘ B) = {〈y, x〉 ∣ x(A ∘ B)y} | |
11 | df-co 4726 | . 2 ⊢ (◡B ∘ ◡A) = {〈y, x〉 ∣ ∃z(y◡Az ∧ z◡Bx)} | |
12 | 9, 10, 11 | 3eqtr4i 2383 | 1 ⊢ ◡(A ∘ B) = (◡B ∘ ◡A) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 {copab 4622 class class class wbr 4639 ∘ ccom 4721 ◡ccnv 4771 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-cnv 4785 |
This theorem is referenced by: rncoss 4972 rncoeq 4975 dmco 5089 cores2 5091 coi2 5095 cnvtr 5098 f1co 5264 cnvpprod 5841 sbthlem3 6205 |
Copyright terms: Public domain | W3C validator |