New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-compl | GIF version |
Description: Define the complement of a class. Compare nic-dfneg 1435. (Contributed by SF, 10-Jan-2015.) |
Ref | Expression |
---|---|
df-compl | ⊢ ∼ A = (A ⩃ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class A | |
2 | 1 | ccompl 3206 | . 2 class ∼ A |
3 | 1, 1 | cnin 3205 | . 2 class (A ⩃ A) |
4 | 2, 3 | wceq 1642 | 1 wff ∼ A = (A ⩃ A) |
Colors of variables: wff setvar class |
This definition is referenced by: elcomplg 3219 nfcompl 3230 compleq 3244 complexg 4100 |
Copyright terms: Public domain | W3C validator |