| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > df-compl | GIF version | ||
| Description: Define the complement of a class. Compare nic-dfneg 1435. (Contributed by SF, 10-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| df-compl | ⊢ ∼ A = (A ⩃ A) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | 1 | ccompl 3206 | . 2 class ∼ A | 
| 3 | 1, 1 | cnin 3205 | . 2 class (A ⩃ A) | 
| 4 | 2, 3 | wceq 1642 | 1 wff ∼ A = (A ⩃ A) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: elcomplg 3219 nfcompl 3230 compleq 3244 complexg 4100 | 
| Copyright terms: Public domain | W3C validator |