| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfcompl | GIF version | ||
| Description: Hypothesis builder for complement. (Contributed by SF, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfbool.1 | ⊢ ℲxA |
| Ref | Expression |
|---|---|
| nfcompl | ⊢ Ⅎx ∼ A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-compl 3213 | . 2 ⊢ ∼ A = (A ⩃ A) | |
| 2 | nfbool.1 | . . 3 ⊢ ℲxA | |
| 3 | 2, 2 | nfnin 3229 | . 2 ⊢ Ⅎx(A ⩃ A) |
| 4 | 1, 3 | nfcxfr 2487 | 1 ⊢ Ⅎx ∼ A |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2477 ⩃ cnin 3205 ∼ ccompl 3206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-nin 3212 df-compl 3213 |
| This theorem is referenced by: nfin 3231 nfun 3232 nfdif 3233 |
| Copyright terms: Public domain | W3C validator |