NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  complexg GIF version

Theorem complexg 4100
Description: The complement of a set is a set. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
complexg (A V → ∼ A V)

Proof of Theorem complexg
StepHypRef Expression
1 df-compl 3213 . 2 A = (AA)
2 ninexg 4098 . . 3 ((A V A V) → (AA) V)
32anidms 626 . 2 (A V → (AA) V)
41, 3syl5eqel 2437 1 (A V → ∼ A V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  Vcvv 2860  cnin 3205  ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  inexg  4101  unexg  4102  difexg  4103  complex  4105  imakexg  4300  intexg  4320  pwexg  4329  imageexg  5801  epprc  5828  fullfunexg  5860  qsexg  5983  addccan2nclem2  6265  fnfreclem1  6318
  Copyright terms: Public domain W3C validator