New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > compleq | GIF version |
Description: Equality law for complement. (Contributed by SF, 11-Jan-2015.) |
Ref | Expression |
---|---|
compleq | ⊢ (A = B → ∼ A = ∼ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nineq12 3237 | . . 3 ⊢ ((A = B ∧ A = B) → (A ⩃ A) = (B ⩃ B)) | |
2 | 1 | anidms 626 | . 2 ⊢ (A = B → (A ⩃ A) = (B ⩃ B)) |
3 | df-compl 3213 | . 2 ⊢ ∼ A = (A ⩃ A) | |
4 | df-compl 3213 | . 2 ⊢ ∼ B = (B ⩃ B) | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ∼ A = ∼ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ⩃ cnin 3205 ∼ ccompl 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 |
This theorem is referenced by: compleqi 3245 compleqd 3246 difeq2 3248 compleqb 3544 elsuci 4415 nnsucelr 4429 ncfinlower 4484 sfindbl 4531 el2c 6192 nmembers1lem3 6271 |
Copyright terms: Public domain | W3C validator |