Detailed syntax breakdown of Definition df-connex
| Step | Hyp | Ref
| Expression |
| 1 | | cconnex 5893 |
. 2
class Connex |
| 2 | | vx |
. . . . . . . 8
setvar x |
| 3 | 2 | cv 1641 |
. . . . . . 7
class x |
| 4 | | vy |
. . . . . . . 8
setvar y |
| 5 | 4 | cv 1641 |
. . . . . . 7
class y |
| 6 | | vr |
. . . . . . . 8
setvar r |
| 7 | 6 | cv 1641 |
. . . . . . 7
class r |
| 8 | 3, 5, 7 | wbr 4640 |
. . . . . 6
wff xry |
| 9 | 5, 3, 7 | wbr 4640 |
. . . . . 6
wff yrx |
| 10 | 8, 9 | wo 357 |
. . . . 5
wff (xry ∨ yrx) |
| 11 | | va |
. . . . . 6
setvar a |
| 12 | 11 | cv 1641 |
. . . . 5
class a |
| 13 | 10, 4, 12 | wral 2615 |
. . . 4
wff ∀y ∈ a (xry ∨ yrx) |
| 14 | 13, 2, 12 | wral 2615 |
. . 3
wff ∀x ∈ a ∀y ∈ a (xry ∨ yrx) |
| 15 | 14, 6, 11 | copab 4623 |
. 2
class {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |
| 16 | 1, 15 | wceq 1642 |
1
wff Connex =
{〈r,
a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |