Detailed syntax breakdown of Definition df-connex
Step | Hyp | Ref
| Expression |
1 | | cconnex 5893 |
. 2
class Connex |
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | vy |
. . . . . . . 8
setvar y |
5 | 4 | cv 1641 |
. . . . . . 7
class y |
6 | | vr |
. . . . . . . 8
setvar r |
7 | 6 | cv 1641 |
. . . . . . 7
class r |
8 | 3, 5, 7 | wbr 4640 |
. . . . . 6
wff xry |
9 | 5, 3, 7 | wbr 4640 |
. . . . . 6
wff yrx |
10 | 8, 9 | wo 357 |
. . . . 5
wff (xry ∨ yrx) |
11 | | va |
. . . . . 6
setvar a |
12 | 11 | cv 1641 |
. . . . 5
class a |
13 | 10, 4, 12 | wral 2615 |
. . . 4
wff ∀y ∈ a (xry ∨ yrx) |
14 | 13, 2, 12 | wral 2615 |
. . 3
wff ∀x ∈ a ∀y ∈ a (xry ∨ yrx) |
15 | 14, 6, 11 | copab 4623 |
. 2
class {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |
16 | 1, 15 | wceq 1642 |
1
wff Connex =
{〈r,
a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |