Detailed syntax breakdown of Definition df-connex
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cconnex 5893 | 
. 2
class  Connex | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | vy | 
. . . . . . . 8
setvar y | 
| 5 | 4 | cv 1641 | 
. . . . . . 7
class y | 
| 6 |   | vr | 
. . . . . . . 8
setvar r | 
| 7 | 6 | cv 1641 | 
. . . . . . 7
class r | 
| 8 | 3, 5, 7 | wbr 4640 | 
. . . . . 6
wff xry | 
| 9 | 5, 3, 7 | wbr 4640 | 
. . . . . 6
wff yrx | 
| 10 | 8, 9 | wo 357 | 
. . . . 5
wff (xry  ∨ yrx) | 
| 11 |   | va | 
. . . . . 6
setvar a | 
| 12 | 11 | cv 1641 | 
. . . . 5
class a | 
| 13 | 10, 4, 12 | wral 2615 | 
. . . 4
wff ∀y ∈ a (xry  ∨ yrx) | 
| 14 | 13, 2, 12 | wral 2615 | 
. . 3
wff ∀x ∈ a ∀y ∈ a (xry  ∨ yrx) | 
| 15 | 14, 6, 11 | copab 4623 | 
. 2
class {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry  ∨ yrx)} | 
| 16 | 1, 15 | wceq 1642 | 
1
wff  Connex =
{〈r,
a〉 ∣ ∀x ∈ a ∀y ∈ a (xry  ∨ yrx)} |