| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-partial | GIF version | ||
| Description: Define the set of all partial orderings over a base set. (Contributed by SF, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-partial | ⊢ Po = (( Ref ∩ Trans ) ∩ Antisym ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpartial 5892 | . 2 class Po | |
| 2 | cref 5890 | . . . 4 class Ref | |
| 3 | ctrans 5889 | . . . 4 class Trans | |
| 4 | 2, 3 | cin 3209 | . . 3 class ( Ref ∩ Trans ) |
| 5 | cantisym 5891 | . . 3 class Antisym | |
| 6 | 4, 5 | cin 3209 | . 2 class (( Ref ∩ Trans ) ∩ Antisym ) |
| 7 | 1, 6 | wceq 1642 | 1 wff Po = (( Ref ∩ Trans ) ∩ Antisym ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: partialex 5918 porta 5934 nchoicelem8 6297 |
| Copyright terms: Public domain | W3C validator |