New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-partial | GIF version |
Description: Define the set of all partial orderings over a base set. (Contributed by SF, 19-Feb-2015.) |
Ref | Expression |
---|---|
df-partial | ⊢ Po = (( Ref ∩ Trans ) ∩ Antisym ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpartial 5891 | . 2 class Po | |
2 | cref 5889 | . . . 4 class Ref | |
3 | ctrans 5888 | . . . 4 class Trans | |
4 | 2, 3 | cin 3208 | . . 3 class ( Ref ∩ Trans ) |
5 | cantisym 5890 | . . 3 class Antisym | |
6 | 4, 5 | cin 3208 | . 2 class (( Ref ∩ Trans ) ∩ Antisym ) |
7 | 1, 6 | wceq 1642 | 1 wff Po = (( Ref ∩ Trans ) ∩ Antisym ) |
Colors of variables: wff setvar class |
This definition is referenced by: partialex 5917 porta 5933 nchoicelem8 6296 |
Copyright terms: Public domain | W3C validator |