Step | Hyp | Ref
| Expression |
1 | | df-connex 5904 |
. . 3
⊢ Connex = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |
2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ 〈r, a〉 ∈ V |
5 | 4 | elcompl 3226 |
. . . . 5
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) |
6 | | elima1c 4948 |
. . . . . . . 8
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c))) |
7 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c))) |
8 | 2 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{x}, a〉 ∈ S
) |
9 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
10 | 9, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{x}, a〉 ∈ S ↔ x ∈ a) |
11 | 8, 10 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ x ∈ a) |
12 | | elima1c 4948 |
. . . . . . . . . . . . 13
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ↔ ∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)))) |
13 | | eldif 3222 |
. . . . . . . . . . . . . . 15
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) ↔ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ ¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)))) |
14 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {x} ∈
V |
15 | 14 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{y}, 〈r, a〉〉 ∈ Ins2 S ) |
16 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{y}, a〉 ∈ S
) |
17 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
18 | 17, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, a〉 ∈ S ↔ y ∈ a) |
19 | 15, 16, 18 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ y ∈ a) |
20 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ 〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) |
21 | | elun 3221 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∨ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “
1c))) |
22 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
23 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 Swap
) |
24 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ p ∈
V |
25 | 24, 17, 9 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 Swap
↔ 〈p, 〈y, x〉〉 ∈ Swap
) |
26 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p Swap 〈y, x〉 ↔ 〈p, 〈y, x〉〉 ∈ Swap ) |
27 | 17, 9 | brswap2 4861 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p Swap 〈y, x〉 ↔ p = 〈x, y〉) |
28 | 26, 27 | bitr3i 242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈p, 〈y, x〉〉 ∈ Swap ↔ p =
〈x,
y〉) |
29 | 23, 25, 28 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
↔ p = 〈x, y〉) |
30 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {y} ∈
V |
31 | 30 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ) |
32 | 14 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ↔ 〈{p}, r〉 ∈ S
) |
33 | 24, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, r〉 ∈ S ↔ p ∈ r) |
34 | 31, 32, 33 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ p ∈ r) |
35 | 29, 34 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 Swap
∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
36 | 22, 35 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
37 | 36 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
38 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S
)) |
39 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (xry ↔ 〈x, y〉 ∈ r) |
40 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈x, y〉 ∈ r ↔
∃p(p = 〈x, y〉 ∧ p ∈ r)) |
41 | 39, 40 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (xry ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
42 | 37, 38, 41 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ↔ xry) |
43 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
44 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ) |
45 | 24, 17, 9 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ↔ 〈p, 〈y, x〉〉 ∈ I
) |
46 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p I 〈y, x〉 ↔ 〈p, 〈y, x〉〉 ∈ I
) |
47 | 17, 9 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 〈y, x〉 ∈ V |
48 | 47 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (p I 〈y, x〉 ↔ p =
〈y,
x〉) |
49 | 46, 48 | bitr3i 242 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈p, 〈y, x〉〉 ∈ I ↔
p = 〈y, x〉) |
50 | 44, 45, 49 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ p = 〈y, x〉) |
51 | 50, 34 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
52 | 43, 51 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
53 | 52 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
54 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S )) |
55 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (yrx ↔ 〈y, x〉 ∈ r) |
56 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈y, x〉 ∈ r ↔
∃p(p = 〈y, x〉 ∧ p ∈ r)) |
57 | 55, 56 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (yrx ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
58 | 53, 54, 57 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ yrx) |
59 | 42, 58 | orbi12i 507 |
. . . . . . . . . . . . . . . . . 18
⊢ ((〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∨ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔
(xry ∨ yrx)) |
60 | 20, 21, 59 | 3bitri 262 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ (xry ∨ yrx)) |
61 | 60 | notbii 287 |
. . . . . . . . . . . . . . . 16
⊢ (¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ ¬
(xry ∨ yrx)) |
62 | 19, 61 | anbi12i 678 |
. . . . . . . . . . . . . . 15
⊢ ((〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ ¬ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) ↔ (y ∈ a ∧ ¬ (xry ∨ yrx))) |
63 | 13, 62 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) ↔ (y ∈ a ∧ ¬ (xry ∨ yrx))) |
64 | 63 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) ↔ ∃y(y ∈ a ∧ ¬ (xry ∨ yrx))) |
65 | 12, 64 | bitri 240 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ↔ ∃y(y ∈ a ∧ ¬ (xry ∨ yrx))) |
66 | | df-rex 2621 |
. . . . . . . . . . . 12
⊢ (∃y ∈ a ¬
(xry ∨ yrx) ↔ ∃y(y ∈ a ∧ ¬ (xry ∨ yrx))) |
67 | | rexnal 2626 |
. . . . . . . . . . . 12
⊢ (∃y ∈ a ¬
(xry ∨ yrx) ↔ ¬
∀y
∈ a
(xry ∨ yrx)) |
68 | 65, 66, 67 | 3bitr2i 264 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ↔ ¬ ∀y ∈ a (xry ∨ yrx)) |
69 | 11, 68 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a (xry ∨ yrx))) |
70 | 7, 69 | bitri 240 |
. . . . . . . . 9
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a (xry ∨ yrx))) |
71 | 70 | exbii 1582 |
. . . . . . . 8
⊢ (∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (xry ∨ yrx))) |
72 | 6, 71 | bitri 240 |
. . . . . . 7
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (xry ∨ yrx))) |
73 | | df-rex 2621 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a (xry ∨ yrx) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a (xry ∨ yrx))) |
74 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a (xry ∨ yrx) ↔ ¬ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)) |
75 | 72, 73, 74 | 3bitr2i 264 |
. . . . . 6
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ¬ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)) |
76 | 75 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a ∀y ∈ a (xry ∨ yrx) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) |
77 | 5, 76 | bitr4i 243 |
. . . 4
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)) |
78 | 77 | opabbi2i 4867 |
. . 3
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a (xry ∨ yrx)} |
79 | 1, 78 | eqtr4i 2376 |
. 2
⊢ Connex = ∼ (( Ins2
S ∩ (( Ins2
Ins2 S ∖ Ins4 ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) |
80 | | ssetex 4745 |
. . . . . 6
⊢ S ∈
V |
81 | 80 | ins2ex 5798 |
. . . . 5
⊢ Ins2 S ∈ V |
82 | 81 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 S ∈
V |
83 | | swapex 4743 |
. . . . . . . . . . . . 13
⊢ Swap ∈
V |
84 | 83 | si3ex 5807 |
. . . . . . . . . . . 12
⊢ SI3 Swap
∈ V |
85 | 84 | ins4ex 5800 |
. . . . . . . . . . 11
⊢ Ins4 SI3
Swap ∈
V |
86 | 85, 82 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) ∈ V |
87 | | 1cex 4143 |
. . . . . . . . . 10
⊢
1c ∈
V |
88 | 86, 87 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∈ V |
89 | | idex 5505 |
. . . . . . . . . . . . 13
⊢ I ∈ V |
90 | 89 | si3ex 5807 |
. . . . . . . . . . . 12
⊢ SI3 I ∈ V |
91 | 90 | ins4ex 5800 |
. . . . . . . . . . 11
⊢ Ins4 SI3
I ∈ V |
92 | 91, 82 | inex 4106 |
. . . . . . . . . 10
⊢ ( Ins4 SI3
I ∩ Ins2 Ins2
S ) ∈
V |
93 | 92, 87 | imaex 4748 |
. . . . . . . . 9
⊢ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ∈ V |
94 | 88, 93 | unex 4107 |
. . . . . . . 8
⊢ ((( Ins4 SI3
Swap ∩ Ins2
Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∈ V |
95 | 94 | ins4ex 5800 |
. . . . . . 7
⊢ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∈ V |
96 | 82, 95 | difex 4108 |
. . . . . 6
⊢ ( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) ∈ V |
97 | 96, 87 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ∈ V |
98 | 81, 97 | inex 4106 |
. . . 4
⊢ ( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ∈ V |
99 | 98, 87 | imaex 4748 |
. . 3
⊢ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ∈ V |
100 | 99 | complex 4105 |
. 2
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∖ Ins4 ((( Ins4 SI3 Swap
∩ Ins2 Ins2 S ) “
1c) ∪ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ∈ V |
101 | 79, 100 | eqeltri 2423 |
1
⊢ Connex ∈
V |