New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-en | GIF version |
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define ≈ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6031. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
df-en | ⊢ ≈ = {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cen 6029 | . 2 class ≈ | |
2 | vx | . . . . . 6 setvar x | |
3 | 2 | cv 1641 | . . . . 5 class x |
4 | vy | . . . . . 6 setvar y | |
5 | 4 | cv 1641 | . . . . 5 class y |
6 | vf | . . . . . 6 setvar f | |
7 | 6 | cv 1641 | . . . . 5 class f |
8 | 3, 5, 7 | wf1o 4781 | . . . 4 wff f:x–1-1-onto→y |
9 | 8, 6 | wex 1541 | . . 3 wff ∃f f:x–1-1-onto→y |
10 | 9, 2, 4 | copab 4623 | . 2 class {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} |
11 | 1, 10 | wceq 1642 | 1 wff ≈ = {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} |
Colors of variables: wff setvar class |
This definition is referenced by: bren 6031 enex 6032 |
Copyright terms: Public domain | W3C validator |