NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-en GIF version

Definition df-en 6030
Description: Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 6031. (Contributed by NM, 28-Mar-1998.)
Assertion
Ref Expression
df-en ≈ = {x, y f f:x1-1-ontoy}
Distinct variable group:   x,y,f

Detailed syntax breakdown of Definition df-en
StepHypRef Expression
1 cen 6029 . 2 class
2 vx . . . . . 6 setvar x
32cv 1641 . . . . 5 class x
4 vy . . . . . 6 setvar y
54cv 1641 . . . . 5 class y
6 vf . . . . . 6 setvar f
76cv 1641 . . . . 5 class f
83, 5, 7wf1o 4781 . . . 4 wff f:x1-1-ontoy
98, 6wex 1541 . . 3 wff f f:x1-1-ontoy
109, 2, 4copab 4623 . 2 class {x, y f f:x1-1-ontoy}
111, 10wceq 1642 1 wff ≈ = {x, y f f:x1-1-ontoy}
Colors of variables: wff setvar class
This definition is referenced by:  bren  6031  enex  6032
  Copyright terms: Public domain W3C validator