NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enex GIF version

Theorem enex 6032
Description: The equinumerosity relationship is a set. (Contributed by SF, 23-Feb-2015.)
Assertion
Ref Expression
enex V

Proof of Theorem enex
Dummy variables f g x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-en 6030 . . 3 ≈ = {x, y f f:x1-1-ontoy}
2 elrn2 4898 . . . . 5 (x, y ran ( Fns ⊗ ran (Image Swap Fns )) ↔ ff, x, y ( Fns ⊗ ran (Image Swap Fns )))
3 df-br 4641 . . . . . . . . 9 (f Fns xf, x Fns )
4 vex 2863 . . . . . . . . . 10 f V
54brfns 5834 . . . . . . . . 9 (f Fns xf Fn x)
63, 5bitr3i 242 . . . . . . . 8 (f, x Fnsf Fn x)
7 elrn2 4898 . . . . . . . . 9 (f, y ran (Image Swap Fns ) ↔ gg, f, y (Image Swap Fns ))
8 oteltxp 5783 . . . . . . . . . . . 12 (g, f, y (Image Swap Fns ) ↔ (g, f Image Swap g, y Fns ))
9 opelcnv 4894 . . . . . . . . . . . . . 14 (g, f Image Swap f, g Image Swap )
10 dfcnv2 5101 . . . . . . . . . . . . . . . 16 f = ( Swap f)
1110eqeq2i 2363 . . . . . . . . . . . . . . 15 (g = fg = ( Swap f))
12 vex 2863 . . . . . . . . . . . . . . . 16 g V
134, 12brimage 5794 . . . . . . . . . . . . . . 15 (fImage Swap gg = ( Swap f))
14 df-br 4641 . . . . . . . . . . . . . . 15 (fImage Swap gf, g Image Swap )
1511, 13, 143bitr2ri 265 . . . . . . . . . . . . . 14 (f, g Image Swap g = f)
169, 15bitri 240 . . . . . . . . . . . . 13 (g, f Image Swap g = f)
17 df-br 4641 . . . . . . . . . . . . . 14 (g Fns yg, y Fns )
1812brfns 5834 . . . . . . . . . . . . . 14 (g Fns yg Fn y)
1917, 18bitr3i 242 . . . . . . . . . . . . 13 (g, y Fnsg Fn y)
2016, 19anbi12i 678 . . . . . . . . . . . 12 ((g, f Image Swap g, y Fns ) ↔ (g = f g Fn y))
218, 20bitri 240 . . . . . . . . . . 11 (g, f, y (Image Swap Fns ) ↔ (g = f g Fn y))
2221exbii 1582 . . . . . . . . . 10 (gg, f, y (Image Swap Fns ) ↔ g(g = f g Fn y))
234cnvex 5103 . . . . . . . . . . 11 f V
24 fneq1 5174 . . . . . . . . . . 11 (g = f → (g Fn yf Fn y))
2523, 24ceqsexv 2895 . . . . . . . . . 10 (g(g = f g Fn y) ↔ f Fn y)
2622, 25bitri 240 . . . . . . . . 9 (gg, f, y (Image Swap Fns ) ↔ f Fn y)
277, 26bitri 240 . . . . . . . 8 (f, y ran (Image Swap Fns ) ↔ f Fn y)
286, 27anbi12i 678 . . . . . . 7 ((f, x Fns f, y ran (Image Swap Fns )) ↔ (f Fn x f Fn y))
29 oteltxp 5783 . . . . . . 7 (f, x, y ( Fns ⊗ ran (Image Swap Fns )) ↔ (f, x Fns f, y ran (Image Swap Fns )))
30 dff1o4 5295 . . . . . . 7 (f:x1-1-ontoy ↔ (f Fn x f Fn y))
3128, 29, 303bitr4i 268 . . . . . 6 (f, x, y ( Fns ⊗ ran (Image Swap Fns )) ↔ f:x1-1-ontoy)
3231exbii 1582 . . . . 5 (ff, x, y ( Fns ⊗ ran (Image Swap Fns )) ↔ f f:x1-1-ontoy)
332, 32bitri 240 . . . 4 (x, y ran ( Fns ⊗ ran (Image Swap Fns )) ↔ f f:x1-1-ontoy)
3433opabbi2i 4867 . . 3 ran ( Fns ⊗ ran (Image Swap Fns )) = {x, y f f:x1-1-ontoy}
351, 34eqtr4i 2376 . 2 ≈ = ran ( Fns ⊗ ran (Image Swap Fns ))
36 fnsex 5833 . . . 4 Fns V
37 swapex 4743 . . . . . . . 8 Swap V
3837imageex 5802 . . . . . . 7 Image Swap V
3938cnvex 5103 . . . . . 6 Image Swap V
4039, 36txpex 5786 . . . . 5 (Image Swap Fns ) V
4140rnex 5108 . . . 4 ran (Image Swap Fns ) V
4236, 41txpex 5786 . . 3 ( Fns ⊗ ran (Image Swap Fns )) V
4342rnex 5108 . 2 ran ( Fns ⊗ ran (Image Swap Fns )) V
4435, 43eqeltri 2423 1 V
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562  {copab 4623   class class class wbr 4640   Swap cswap 4719  cima 4723  ccnv 4772  ran crn 4774   Fn wfn 4777  1-1-ontowf1o 4781  ctxp 5736  Imagecimage 5754   Fns cfns 5762  cen 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-en 6030
This theorem is referenced by:  ener  6040  ncsex  6112  ncex  6118  ovmuc  6131  mucex  6134  ovcelem1  6172  ceex  6175
  Copyright terms: Public domain W3C validator