New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bren | GIF version |
Description: Equinumerosity relationship. (Contributed by SF, 23-Feb-2015.) |
Ref | Expression |
---|---|
bren | ⊢ (A ≈ B ↔ ∃f f:A–1-1-onto→B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brex 4690 | . 2 ⊢ (A ≈ B → (A ∈ V ∧ B ∈ V)) | |
2 | vex 2863 | . . . . . 6 ⊢ f ∈ V | |
3 | 2 | dmex 5107 | . . . . 5 ⊢ dom f ∈ V |
4 | 2 | rnex 5108 | . . . . 5 ⊢ ran f ∈ V |
5 | 3, 4 | pm3.2i 441 | . . . 4 ⊢ (dom f ∈ V ∧ ran f ∈ V) |
6 | f1odm 5291 | . . . . . 6 ⊢ (f:A–1-1-onto→B → dom f = A) | |
7 | 6 | eleq1d 2419 | . . . . 5 ⊢ (f:A–1-1-onto→B → (dom f ∈ V ↔ A ∈ V)) |
8 | f1ofo 5294 | . . . . . . 7 ⊢ (f:A–1-1-onto→B → f:A–onto→B) | |
9 | forn 5273 | . . . . . . 7 ⊢ (f:A–onto→B → ran f = B) | |
10 | 8, 9 | syl 15 | . . . . . 6 ⊢ (f:A–1-1-onto→B → ran f = B) |
11 | 10 | eleq1d 2419 | . . . . 5 ⊢ (f:A–1-1-onto→B → (ran f ∈ V ↔ B ∈ V)) |
12 | 7, 11 | anbi12d 691 | . . . 4 ⊢ (f:A–1-1-onto→B → ((dom f ∈ V ∧ ran f ∈ V) ↔ (A ∈ V ∧ B ∈ V))) |
13 | 5, 12 | mpbii 202 | . . 3 ⊢ (f:A–1-1-onto→B → (A ∈ V ∧ B ∈ V)) |
14 | 13 | exlimiv 1634 | . 2 ⊢ (∃f f:A–1-1-onto→B → (A ∈ V ∧ B ∈ V)) |
15 | f1oeq2 5283 | . . . 4 ⊢ (x = A → (f:x–1-1-onto→y ↔ f:A–1-1-onto→y)) | |
16 | 15 | exbidv 1626 | . . 3 ⊢ (x = A → (∃f f:x–1-1-onto→y ↔ ∃f f:A–1-1-onto→y)) |
17 | f1oeq3 5284 | . . . 4 ⊢ (y = B → (f:A–1-1-onto→y ↔ f:A–1-1-onto→B)) | |
18 | 17 | exbidv 1626 | . . 3 ⊢ (y = B → (∃f f:A–1-1-onto→y ↔ ∃f f:A–1-1-onto→B)) |
19 | df-en 6030 | . . 3 ⊢ ≈ = {〈x, y〉 ∣ ∃f f:x–1-1-onto→y} | |
20 | 16, 18, 19 | brabg 4707 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ≈ B ↔ ∃f f:A–1-1-onto→B)) |
21 | 1, 14, 20 | pm5.21nii 342 | 1 ⊢ (A ≈ B ↔ ∃f f:A–1-1-onto→B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 class class class wbr 4640 dom cdm 4773 ran crn 4774 –onto→wfo 4780 –1-1-onto→wf1o 4781 ≈ cen 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-swap 4725 df-ima 4728 df-cnv 4786 df-rn 4787 df-dm 4788 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-en 6030 |
This theorem is referenced by: f1oeng 6033 ensymi 6037 entr 6039 en0 6043 unen 6049 xpen 6056 enpw1 6063 enmap2 6069 enmap1 6075 nenpw1pwlem2 6086 ncdisjun 6137 1cnc 6140 sbthlem3 6206 nclenc 6223 lenc 6224 |
Copyright terms: Public domain | W3C validator |