| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-er | GIF version | ||
| Description: Define the set of all equivalence relationships over a base set. (Contributed by SF, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-er | ⊢ Er = ( Sym ∩ Trans ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cer 5899 | . 2 class Er | |
| 2 | csym 5898 | . . 3 class Sym | |
| 3 | ctrans 5889 | . . 3 class Trans | |
| 4 | 2, 3 | cin 3209 | . 2 class ( Sym ∩ Trans ) |
| 5 | 1, 4 | wceq 1642 | 1 wff Er = ( Sym ∩ Trans ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: erex 5921 ersymtr 5933 |
| Copyright terms: Public domain | W3C validator |