Step | Hyp | Ref
| Expression |
1 | | df-trans 5900 |
. . 3
⊢ Trans = {⟨r, a⟩ ∣ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)} |
2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ ⟨r, a⟩ ∈ V |
5 | 4 | elcompl 3226 |
. . . . 5
⊢ (⟨r, a⟩ ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ↔ ¬ ⟨r, a⟩ ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c)) |
6 | | elin 3220 |
. . . . . . . . . 10
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) ↔ (⟨{x}, ⟨r, a⟩⟩ ∈ Ins2 S ∧ ⟨{x}, ⟨r, a⟩⟩ ∈ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c))) |
7 | 2 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ Ins2 S ↔ ⟨{x}, a⟩ ∈ S
) |
8 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
9 | 8, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (⟨{x}, a⟩ ∈ S ↔ x ∈ a) |
10 | 7, 9 | bitri 240 |
. . . . . . . . . . 11
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ Ins2 S ↔ x ∈ a) |
11 | | elima1c 4948 |
. . . . . . . . . . . 12
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ∃y⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c))) |
12 | | elin 3220 |
. . . . . . . . . . . . . 14
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c))) |
13 | | snex 4112 |
. . . . . . . . . . . . . . . . 17
⊢ {x} ∈
V |
14 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{y}, ⟨r, a⟩⟩ ∈ Ins2 S ) |
15 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{y}, ⟨r, a⟩⟩ ∈ Ins2 S ↔ ⟨{y}, a⟩ ∈ S
) |
16 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ y ∈
V |
17 | 16, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{y}, a⟩ ∈ S ↔ y ∈ a) |
18 | 14, 15, 17 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ↔ y ∈ a) |
19 | | elima1c 4948 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ↔ ∃z⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)))) |
20 | | elin 3220 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) ↔ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 S ∧ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (((V × Ins4 ((
Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)))) |
21 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {y} ∈
V |
22 | 21 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 S ↔ ⟨{z}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ) |
23 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{z}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{z}, ⟨r, a⟩⟩ ∈ Ins2 S ) |
24 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{z}, ⟨r, a⟩⟩ ∈ Ins2 S ↔ ⟨{z}, a⟩ ∈ S
) |
25 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ z ∈
V |
26 | 25, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{z}, a⟩ ∈ S ↔ z ∈ a) |
27 | 24, 26 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{z}, ⟨r, a⟩⟩ ∈ Ins2 S ↔ z ∈ a) |
28 | 22, 23, 27 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 S ↔ z ∈ a) |
29 | | eldif 3222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) ↔ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∧ ¬ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) |
30 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ↔ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (V × Ins4 ((
Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∧ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c))) |
31 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {z} ∈
V |
32 | | opelxp 4812 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ↔ ({z} ∈ V ∧ ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) |
33 | 31, 32 | mpbiran 884 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ↔ ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) |
34 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ⟨{y}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) |
35 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S )) |
36 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ ⟨{z}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st )) |
37 | 25, 16, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{z}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ ⟨z, ⟨y, x⟩⟩ ∈ (2nd ⊗ 1st
)) |
38 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (⟨z, ⟨y, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ (⟨z, y⟩ ∈ 2nd ∧
⟨z,
x⟩ ∈ 1st )) |
39 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((⟨z, y⟩ ∈ 2nd ∧
⟨z,
x⟩ ∈ 1st ) ↔ (⟨z, x⟩ ∈ 1st ∧
⟨z,
y⟩ ∈ 2nd )) |
40 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (z1st x ↔ ⟨z, x⟩ ∈
1st ) |
41 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (z2nd y ↔ ⟨z, y⟩ ∈
2nd ) |
42 | 40, 41 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((z1st x ∧ z2nd y) ↔ (⟨z, x⟩ ∈ 1st ∧
⟨z,
y⟩ ∈ 2nd )) |
43 | 39, 42 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((⟨z, y⟩ ∈ 2nd ∧
⟨z,
x⟩ ∈ 1st ) ↔ (z1st x ∧ z2nd y)) |
44 | 8, 16 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((z1st x ∧ z2nd y) ↔ z =
⟨x,
y⟩) |
45 | 38, 43, 44 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨z, ⟨y, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ z = ⟨x, y⟩) |
46 | 36, 37, 45 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ z = ⟨x, y⟩) |
47 | 21 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{z}, ⟨{x}, r⟩⟩ ∈ Ins2 S ) |
48 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{z}, ⟨{x}, r⟩⟩ ∈ Ins2 S ↔ ⟨{z}, r⟩ ∈ S
) |
49 | 25, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{z}, r⟩ ∈ S ↔ z ∈ r) |
50 | 47, 48, 49 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ↔ z ∈ r) |
51 | 46, 50 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ) ↔ (z = ⟨x, y⟩ ∧ z ∈ r)) |
52 | 35, 51 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (z = ⟨x, y⟩ ∧ z ∈ r)) |
53 | 52 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∃z⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ ∃z(z = ⟨x, y⟩ ∧ z ∈ r)) |
54 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨{y}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ∃z⟨{z}, ⟨{y}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S )) |
55 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (xry ↔ ⟨x, y⟩ ∈ r) |
56 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨x, y⟩ ∈ r ↔
∃z(z = ⟨x, y⟩ ∧ z ∈ r)) |
57 | 55, 56 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (xry ↔ ∃z(z = ⟨x, y⟩ ∧ z ∈ r)) |
58 | 53, 54, 57 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨{y}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ xry) |
59 | 33, 34, 58 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ↔ xry) |
60 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 Ins3 S )) |
61 | 13, 4 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ⟨{x}, ⟨r, a⟩⟩ ∈
V |
62 | 61 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ ⟨{q}, ⟨{z}, {y}⟩⟩ ∈ SI3 (2nd ⊗
1st )) |
63 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ q ∈
V |
64 | 63, 25, 16 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{q}, ⟨{z}, {y}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ ⟨q, ⟨z, y⟩⟩ ∈ (2nd ⊗ 1st
)) |
65 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨q, ⟨z, y⟩⟩ ∈
(2nd ⊗ 1st ) ↔ (⟨q, z⟩ ∈ 2nd ∧
⟨q,
y⟩ ∈ 1st )) |
66 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((⟨q, z⟩ ∈ 2nd ∧
⟨q,
y⟩ ∈ 1st ) ↔ (⟨q, y⟩ ∈ 1st ∧
⟨q,
z⟩ ∈ 2nd )) |
67 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (q1st y ↔ ⟨q, y⟩ ∈
1st ) |
68 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (q2nd z ↔ ⟨q, z⟩ ∈
2nd ) |
69 | 67, 68 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((q1st y ∧ q2nd z) ↔ (⟨q, y⟩ ∈ 1st ∧
⟨q,
z⟩ ∈ 2nd )) |
70 | 66, 69 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((⟨q, z⟩ ∈ 2nd ∧
⟨q,
y⟩ ∈ 1st ) ↔ (q1st y ∧ q2nd z)) |
71 | 16, 25 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((q1st y ∧ q2nd z) ↔ q =
⟨y,
z⟩) |
72 | 65, 70, 71 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨q, ⟨z, y⟩⟩ ∈
(2nd ⊗ 1st ) ↔ q = ⟨y, z⟩) |
73 | 62, 64, 72 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ q = ⟨y, z⟩) |
74 | 31 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 Ins3 S ↔ ⟨{q}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins3 S ) |
75 | 21 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{q}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins3 S ↔ ⟨{q}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins3 S ) |
76 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{q}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins3 S ↔ ⟨{q}, ⟨r, a⟩⟩ ∈ Ins3 S ) |
77 | 3 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{q}, ⟨r, a⟩⟩ ∈ Ins3 S ↔ ⟨{q}, r⟩ ∈ S
) |
78 | 63, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{q}, r⟩ ∈ S ↔ q ∈ r) |
79 | 76, 77, 78 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{q}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins3 S ↔ q ∈ r) |
80 | 74, 75, 79 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 Ins3 S ↔ q ∈ r) |
81 | 73, 80 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 Ins3 S ) ↔ (q = ⟨y, z⟩ ∧ q ∈ r)) |
82 | 60, 81 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ (q = ⟨y, z⟩ ∧ q ∈ r)) |
83 | 82 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃q⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) ↔ ∃q(q = ⟨y, z⟩ ∧ q ∈ r)) |
84 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c) ↔ ∃q⟨{q}, ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S )) |
85 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (yrz ↔ ⟨y, z⟩ ∈ r) |
86 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨y, z⟩ ∈ r ↔
∃q(q = ⟨y, z⟩ ∧ q ∈ r)) |
87 | 85, 86 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (yrz ↔ ∃q(q = ⟨y, z⟩ ∧ q ∈ r)) |
88 | 83, 84, 87 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c) ↔ yrz) |
89 | 59, 88 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∧ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c)) ↔ (xry ∧ yrz)) |
90 | 30, 89 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ↔ (xry ∧ yrz)) |
91 | 21 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ⟨{z}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) |
92 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟨{z}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ⟨{z}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) |
93 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S )) |
94 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ ⟨{y}, ⟨{z}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st )) |
95 | 16, 25, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{y}, ⟨{z}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ ⟨y, ⟨z, x⟩⟩ ∈ (2nd ⊗ 1st
)) |
96 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((⟨y, z⟩ ∈ 2nd ∧
⟨y,
x⟩ ∈ 1st ) ↔ (⟨y, x⟩ ∈ 1st ∧
⟨y,
z⟩ ∈ 2nd )) |
97 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (⟨y, ⟨z, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ (⟨y, z⟩ ∈ 2nd ∧
⟨y,
x⟩ ∈ 1st )) |
98 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (y1st x ↔ ⟨y, x⟩ ∈
1st ) |
99 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (y2nd z ↔ ⟨y, z⟩ ∈
2nd ) |
100 | 98, 99 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((y1st x ∧ y2nd z) ↔ (⟨y, x⟩ ∈ 1st ∧
⟨y,
z⟩ ∈ 2nd )) |
101 | 96, 97, 100 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨y, ⟨z, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ (y1st x ∧ y2nd z)) |
102 | 8, 25 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((y1st x ∧ y2nd z) ↔ y =
⟨x,
z⟩) |
103 | 95, 101, 102 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{y}, ⟨{z}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ y = ⟨x, z⟩) |
104 | 94, 103 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ y = ⟨x, z⟩) |
105 | 31 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ↔ ⟨{y}, ⟨{x}, r⟩⟩ ∈ Ins2 S ) |
106 | 13 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{y}, ⟨{x}, r⟩⟩ ∈ Ins2 S ↔ ⟨{y}, r⟩ ∈ S
) |
107 | 16, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨{y}, r⟩ ∈ S ↔ y ∈ r) |
108 | 105, 106,
107 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ↔ y ∈ r) |
109 | 104, 108 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ ⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ Ins2 Ins2 S ) ↔ (y = ⟨x, z⟩ ∧ y ∈ r)) |
110 | 93, 109 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (y = ⟨x, z⟩ ∧ y ∈ r)) |
111 | 110 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (∃y⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ ∃y(y = ⟨x, z⟩ ∧ y ∈ r)) |
112 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨{z}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ∃y⟨{y}, ⟨{z}, ⟨{x}, r⟩⟩⟩ ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S )) |
113 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (xrz ↔ ⟨x, z⟩ ∈ r) |
114 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨x, z⟩ ∈ r ↔
∃y(y = ⟨x, z⟩ ∧ y ∈ r)) |
115 | 113, 114 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (xrz ↔ ∃y(y = ⟨x, z⟩ ∧ y ∈ r)) |
116 | 111, 112,
115 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟨{z}, ⟨{x}, r⟩⟩ ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ xrz) |
117 | 91, 92, 116 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ xrz) |
118 | 117 | notbii 287 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ¬ xrz) |
119 | 90, 118 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∧ ¬ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) ↔ ((xry ∧ yrz) ∧ ¬ xrz)) |
120 | 29, 119 | bitri 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) ↔ ((xry ∧ yrz) ∧ ¬ xrz)) |
121 | 28, 120 | anbi12i 678 |
. . . . . . . . . . . . . . . . . 18
⊢ ((⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ Ins2 Ins2 Ins2 S ∧ ⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ (((V × Ins4 ((
Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) ↔ (z ∈ a ∧ ((xry ∧ yrz) ∧ ¬ xrz))) |
122 | 20, 121 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) ↔ (z ∈ a ∧ ((xry ∧ yrz) ∧ ¬ xrz))) |
123 | 122 | exbii 1582 |
. . . . . . . . . . . . . . . 16
⊢ (∃z⟨{z}, ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩⟩ ∈ ( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) ↔ ∃z(z ∈ a ∧ ((xry ∧ yrz) ∧ ¬ xrz))) |
124 | | df-rex 2621 |
. . . . . . . . . . . . . . . . 17
⊢ (∃z ∈ a ((xry ∧ yrz) ∧ ¬ xrz) ↔ ∃z(z ∈ a ∧ ((xry ∧ yrz) ∧ ¬ xrz))) |
125 | | rexanali 2661 |
. . . . . . . . . . . . . . . . 17
⊢ (∃z ∈ a ((xry ∧ yrz) ∧ ¬ xrz) ↔ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz)) |
126 | 124, 125 | bitr3i 242 |
. . . . . . . . . . . . . . . 16
⊢ (∃z(z ∈ a ∧ ((xry ∧ yrz) ∧ ¬ xrz)) ↔ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz)) |
127 | 19, 123, 126 | 3bitri 262 |
. . . . . . . . . . . . . . 15
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ↔ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz)) |
128 | 18, 127 | anbi12i 678 |
. . . . . . . . . . . . . 14
⊢ ((⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ Ins2 Ins2 S ∧ ⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (y ∈ a ∧ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz))) |
129 | 12, 128 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ (y ∈ a ∧ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz))) |
130 | 129 | exbii 1582 |
. . . . . . . . . . . 12
⊢ (∃y⟨{y}, ⟨{x}, ⟨r, a⟩⟩⟩ ∈ ( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ↔ ∃y(y ∈ a ∧ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz))) |
131 | | df-rex 2621 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ a ¬ ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ∃y(y ∈ a ∧ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz))) |
132 | | rexnal 2626 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ a ¬ ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
133 | 131, 132 | bitr3i 242 |
. . . . . . . . . . . 12
⊢ (∃y(y ∈ a ∧ ¬ ∀z ∈ a ((xry ∧ yrz) → xrz)) ↔ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
134 | 11, 130, 133 | 3bitri 262 |
. . . . . . . . . . 11
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ↔ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
135 | 10, 134 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((⟨{x}, ⟨r, a⟩⟩ ∈ Ins2 S ∧ ⟨{x}, ⟨r, a⟩⟩ ∈ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz))) |
136 | 6, 135 | bitri 240 |
. . . . . . . . 9
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz))) |
137 | 136 | exbii 1582 |
. . . . . . . 8
⊢ (∃x⟨{x}, ⟨r, a⟩⟩ ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz))) |
138 | | elima1c 4948 |
. . . . . . . 8
⊢ (⟨r, a⟩ ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ↔ ∃x⟨{x}, ⟨r, a⟩⟩ ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c))) |
139 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃x ∈ a ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz))) |
140 | 137, 138,
139 | 3bitr4i 268 |
. . . . . . 7
⊢ (⟨r, a⟩ ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ↔ ∃x ∈ a ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
141 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ¬ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
142 | 140, 141 | bitri 240 |
. . . . . 6
⊢ (⟨r, a⟩ ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ↔ ¬ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)) |
143 | 142 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ¬ ⟨r, a⟩ ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c)) |
144 | 5, 143 | bitr4i 243 |
. . . 4
⊢ (⟨r, a⟩ ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ↔ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) →
xrz)) |
145 | 144 | opabbi2i 4867 |
. . 3
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) = {⟨r, a⟩ ∣ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)} |
146 | 1, 145 | eqtr4i 2376 |
. 2
⊢ Trans = ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) |
147 | | ssetex 4745 |
. . . . . 6
⊢ S ∈
V |
148 | 147 | ins2ex 5798 |
. . . . 5
⊢ Ins2 S ∈ V |
149 | 148 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 S ∈
V |
150 | 149 | ins2ex 5798 |
. . . . . . . . 9
⊢ Ins2 Ins2 Ins2 S ∈ V |
151 | | vvex 4110 |
. . . . . . . . . . . 12
⊢ V ∈ V |
152 | | 2ndex 5113 |
. . . . . . . . . . . . . . . . . 18
⊢ 2nd
∈ V |
153 | | 1stex 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ 1st
∈ V |
154 | 152, 153 | txpex 5786 |
. . . . . . . . . . . . . . . . 17
⊢ (2nd
⊗ 1st ) ∈
V |
155 | 154 | si3ex 5807 |
. . . . . . . . . . . . . . . 16
⊢ SI3 (2nd ⊗
1st ) ∈ V |
156 | 155 | ins4ex 5800 |
. . . . . . . . . . . . . . 15
⊢ Ins4 SI3
(2nd ⊗ 1st ) ∈
V |
157 | 156, 149 | inex 4106 |
. . . . . . . . . . . . . 14
⊢ ( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) ∈
V |
158 | | 1cex 4143 |
. . . . . . . . . . . . . 14
⊢
1c ∈
V |
159 | 157, 158 | imaex 4748 |
. . . . . . . . . . . . 13
⊢ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∈ V |
160 | 159 | ins4ex 5800 |
. . . . . . . . . . . 12
⊢ Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∈ V |
161 | 151, 160 | xpex 5116 |
. . . . . . . . . . 11
⊢ (V × Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∈ V |
162 | 147 | ins3ex 5799 |
. . . . . . . . . . . . . . . 16
⊢ Ins3 S ∈ V |
163 | 162 | ins2ex 5798 |
. . . . . . . . . . . . . . 15
⊢ Ins2 Ins3 S ∈
V |
164 | 163 | ins2ex 5798 |
. . . . . . . . . . . . . 14
⊢ Ins2 Ins2 Ins3 S ∈ V |
165 | 164 | ins2ex 5798 |
. . . . . . . . . . . . 13
⊢ Ins2 Ins2 Ins2 Ins3 S ∈
V |
166 | 156, 165 | inex 4106 |
. . . . . . . . . . . 12
⊢ ( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) ∈
V |
167 | 166, 158 | imaex 4748 |
. . . . . . . . . . 11
⊢ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “ 1c) ∈ V |
168 | 161, 167 | inex 4106 |
. . . . . . . . . 10
⊢ ((V × Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∈ V |
169 | 160 | ins2ex 5798 |
. . . . . . . . . 10
⊢ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∈ V |
170 | 168, 169 | difex 4108 |
. . . . . . . . 9
⊢ (((V × Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c)) ∈ V |
171 | 150, 170 | inex 4106 |
. . . . . . . 8
⊢ ( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) ∈ V |
172 | 171, 158 | imaex 4748 |
. . . . . . 7
⊢ (( Ins2 Ins2 Ins2 S ∩ (((V ×
Ins4 (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c) ∈ V |
173 | 149, 172 | inex 4106 |
. . . . . 6
⊢ ( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) ∈ V |
174 | 173, 158 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c) ∈ V |
175 | 148, 174 | inex 4106 |
. . . 4
⊢ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) ∈ V |
176 | 175, 158 | imaex 4748 |
. . 3
⊢ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ∈ V |
177 | 176 | complex 4105 |
. 2
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ (( Ins2 Ins2 Ins2 S ∩ (((V × Ins4
(( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c)) ∩ (( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 Ins2 Ins3 S ) “
1c)) ∖ Ins2 Ins4 (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c))) “
1c)) “ 1c)) “
1c) ∈ V |
178 | 146, 177 | eqeltri 2423 |
1
⊢ Trans ∈
V |