| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > df-int | GIF version | ||
| Description: Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, ∩{{ 1 , 3 }, { 1 , 8 }} = { 1 }. Compare this with the intersection of two classes, df-in 3214. (Contributed by NM, 18-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-int | ⊢ ∩A = {x ∣ ∀y(y ∈ A → x ∈ y)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class A | |
| 2 | 1 | cint 3927 | . 2 class ∩A |
| 3 | vy | . . . . . . 7 setvar y | |
| 4 | 3 | cv 1641 | . . . . . 6 class y |
| 5 | 4, 1 | wcel 1710 | . . . . 5 wff y ∈ A |
| 6 | vx | . . . . . 6 setvar x | |
| 7 | 6, 3 | wel 1711 | . . . . 5 wff x ∈ y |
| 8 | 5, 7 | wi 4 | . . . 4 wff (y ∈ A → x ∈ y) |
| 9 | 8, 3 | wal 1540 | . . 3 wff ∀y(y ∈ A → x ∈ y) |
| 10 | 9, 6 | cab 2339 | . 2 class {x ∣ ∀y(y ∈ A → x ∈ y)} |
| 11 | 2, 10 | wceq 1642 | 1 wff ∩A = {x ∣ ∀y(y ∈ A → x ∈ y)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfint2 3929 elint 3933 int0 3941 dfiin2g 4001 |
| Copyright terms: Public domain | W3C validator |