NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elint GIF version

Theorem elint 3933
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 A V
Assertion
Ref Expression
elint (A Bx(x BA x))
Distinct variable groups:   x,A   x,B

Proof of Theorem elint
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 A V
2 eleq1 2413 . . . 4 (y = A → (y xA x))
32imbi2d 307 . . 3 (y = A → ((x By x) ↔ (x BA x)))
43albidv 1625 . 2 (y = A → (x(x By x) ↔ x(x BA x)))
5 df-int 3928 . 2 B = {y x(x By x)}
61, 4, 5elab2 2989 1 (A Bx(x BA x))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wal 1540   = wceq 1642   wcel 1710  Vcvv 2860  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-int 3928
This theorem is referenced by:  elint2  3934  elintab  3938  intss1  3942  intss  3948  intun  3959  intpr  3960
  Copyright terms: Public domain W3C validator