| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfint2 | GIF version | ||
| Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfint2 | ⊢ ∩A = {x ∣ ∀y ∈ A x ∈ y} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-int 3928 | . 2 ⊢ ∩A = {x ∣ ∀y(y ∈ A → x ∈ y)} | |
| 2 | df-ral 2620 | . . 3 ⊢ (∀y ∈ A x ∈ y ↔ ∀y(y ∈ A → x ∈ y)) | |
| 3 | 2 | abbii 2466 | . 2 ⊢ {x ∣ ∀y ∈ A x ∈ y} = {x ∣ ∀y(y ∈ A → x ∈ y)} |
| 4 | 1, 3 | eqtr4i 2376 | 1 ⊢ ∩A = {x ∣ ∀y ∈ A x ∈ y} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∩cint 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ral 2620 df-int 3928 |
| This theorem is referenced by: inteq 3930 nfint 3937 intiin 4021 |
| Copyright terms: Public domain | W3C validator |