Detailed syntax breakdown of Definition df-lefin
Step | Hyp | Ref
| Expression |
1 | | clefin 4433 |
. 2
class ≤fin |
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | vy |
. . . . . . . . 9
setvar y |
5 | 4 | cv 1641 |
. . . . . . . 8
class y |
6 | | vz |
. . . . . . . . 9
setvar z |
7 | 6 | cv 1641 |
. . . . . . . 8
class z |
8 | 5, 7 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
10 | | vw |
. . . . . . . . . 10
setvar w |
11 | 10 | cv 1641 |
. . . . . . . . 9
class w |
12 | 5, 11 | cplc 4376 |
. . . . . . . 8
class (y +c w) |
13 | 7, 12 | wceq 1642 |
. . . . . . 7
wff z =
(y +c w) |
14 | | cnnc 4374 |
. . . . . . 7
class Nn |
15 | 13, 10, 14 | wrex 2616 |
. . . . . 6
wff ∃w ∈ Nn z = (y
+c w) |
16 | 9, 15 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃w ∈ Nn z = (y
+c w)) |
17 | 16, 6 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) |
18 | 17, 4 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) |
19 | 18, 2 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |
20 | 1, 19 | wceq 1642 |
1
wff ≤fin = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |