Detailed syntax breakdown of Definition df-lefin
| Step | Hyp | Ref
 | Expression | 
| 1 |   | clefin 4433 | 
. 2
class  ≤fin | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | vy | 
. . . . . . . . 9
setvar y | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class y | 
| 6 |   | vz | 
. . . . . . . . 9
setvar z | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class z | 
| 8 | 5, 7 | copk 4058 | 
. . . . . . 7
class ⟪y, z⟫ | 
| 9 | 3, 8 | wceq 1642 | 
. . . . . 6
wff x =
⟪y, z⟫ | 
| 10 |   | vw | 
. . . . . . . . . 10
setvar w | 
| 11 | 10 | cv 1641 | 
. . . . . . . . 9
class w | 
| 12 | 5, 11 | cplc 4376 | 
. . . . . . . 8
class (y +c w) | 
| 13 | 7, 12 | wceq 1642 | 
. . . . . . 7
wff z =
(y +c w) | 
| 14 |   | cnnc 4374 | 
. . . . . . 7
class  Nn | 
| 15 | 13, 10, 14 | wrex 2616 | 
. . . . . 6
wff ∃w ∈ Nn z = (y
+c w) | 
| 16 | 9, 15 | wa 358 | 
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃w ∈ Nn z = (y
+c w)) | 
| 17 | 16, 6 | wex 1541 | 
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) | 
| 18 | 17, 4 | wex 1541 | 
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) | 
| 19 | 18, 2 | cab 2339 | 
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} | 
| 20 | 1, 19 | wceq 1642 | 
1
wff  ≤fin = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |