Detailed syntax breakdown of Definition df-lefin
| Step | Hyp | Ref
| Expression |
| 1 | | clefin 4433 |
. 2
class ≤fin |
| 2 | | vx |
. . . . . . . 8
setvar x |
| 3 | 2 | cv 1641 |
. . . . . . 7
class x |
| 4 | | vy |
. . . . . . . . 9
setvar y |
| 5 | 4 | cv 1641 |
. . . . . . . 8
class y |
| 6 | | vz |
. . . . . . . . 9
setvar z |
| 7 | 6 | cv 1641 |
. . . . . . . 8
class z |
| 8 | 5, 7 | copk 4058 |
. . . . . . 7
class ⟪y, z⟫ |
| 9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
⟪y, z⟫ |
| 10 | | vw |
. . . . . . . . . 10
setvar w |
| 11 | 10 | cv 1641 |
. . . . . . . . 9
class w |
| 12 | 5, 11 | cplc 4376 |
. . . . . . . 8
class (y +c w) |
| 13 | 7, 12 | wceq 1642 |
. . . . . . 7
wff z =
(y +c w) |
| 14 | | cnnc 4374 |
. . . . . . 7
class Nn |
| 15 | 13, 10, 14 | wrex 2616 |
. . . . . 6
wff ∃w ∈ Nn z = (y
+c w) |
| 16 | 9, 15 | wa 358 |
. . . . 5
wff (x
= ⟪y, z⟫ ∧ ∃w ∈ Nn z = (y
+c w)) |
| 17 | 16, 6 | wex 1541 |
. . . 4
wff ∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) |
| 18 | 17, 4 | wex 1541 |
. . 3
wff ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w)) |
| 19 | 18, 2 | cab 2339 |
. 2
class {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |
| 20 | 1, 19 | wceq 1642 |
1
wff ≤fin = {x ∣ ∃y∃z(x = ⟪y,
z⟫ ∧ ∃w ∈ Nn z = (y +c w))} |