HomeHome New Foundations Explorer
Theorem List (p. 45 of 64)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 4401-4500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0nelsuc 4401 The empty class is not a member of a successor. (Contributed by SF, 14-Jan-2015.)
¬ (A +c 1c)
 
Theorem0cnsuc 4402 Cardinal zero is not a successor. Compare Theorem X.1.2 of [Rosser] p. 275. (Contributed by SF, 14-Jan-2015.)
(A +c 1c) ≠ 0c
 
Theorempeano1 4403 Cardinal zero is a finite cardinal. Theorem X.1.4 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.)
0c Nn
 
Theorempeano2 4404 The finite cardinals are closed under addition of one. Theorem X.1.5 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.)
(A Nn → (A +c 1c) Nn )
 
Theorempeano3 4405 The successor of a finite cardinal is not zero. (Contributed by SF, 14-Jan-2015.)
(A Nn → (A +c 1c) ≠ 0c)
 
Theoremaddcid1 4406 Cardinal zero is a fixed point for cardinal addition. Theorem X.1.8 of [Rosser] p. 276. (Contributed by SF, 16-Jan-2015.)
(A +c 0c) = A
 
Theoremaddccom 4407 Cardinal sum commutes. Theorem X.1.9 of [Rosser] p. 276. (Contributed by SF, 15-Jan-2015.)
(A +c B) = (B +c A)
 
Theoremaddcid2 4408 Cardinal zero is a fixed point for cardinal addition. Theorem X.1.8 of [Rosser] p. 276. (Contributed by SF, 16-Jan-2015.)
(0c +c A) = A
 
Theorem1cnnc 4409 Cardinal one is a finite cardinal. Theorem X.1.12 of [Rosser] p. 277. (Contributed by SF, 16-Jan-2015.)
1c Nn
 
Theorempeano5 4410* The principle of mathematical induction: a set containing cardinal zero and closed under the successor operator is a superset of the finite cardinals. Theorem X.1.6 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.)
((A V 0c A x Nn (x A → (x +c 1c) A)) → Nn A)
 
Theoremfindsd 4411* Principle of finite induction over the finite cardinals, using implicit substitutions. The first hypothesis ensures stratification of φ, the next four set up the substitutions, and the last two set up the base case and induction hypothesis. This version allows for an extra deduction clause that may make proving stratification simpler. Compare Theorem X.1.13 of [Rosser] p. 277. (Contributed by SF, 31-Jul-2019.)
(η → {x φ} V)    &   (x = 0c → (φψ))    &   (x = y → (φχ))    &   (x = (y +c 1c) → (φθ))    &   (x = A → (φτ))    &   (ηψ)    &   ((y Nn η) → (χθ))       ((A Nn η) → τ)
 
Theoremfinds 4412* Principle of finite induction over the finite cardinals, using implicit substitutions. The first hypothesis ensures stratification of φ, the next four set up the substitutions, and the last two set up the base case and induction hypothesis. Compare Theorem X.1.13 of [Rosser] p. 277. (Contributed by SF, 14-Jan-2015.)
{x φ} V    &   (x = 0c → (φψ))    &   (x = y → (φχ))    &   (x = (y +c 1c) → (φθ))    &   (x = A → (φτ))    &   ψ    &   (y Nn → (χθ))       (A Nnτ)
 
Theoremnnc0suc 4413* All naturals are either zero or a successor. Theorem X.1.7 of [Rosser] p. 276. (Contributed by SF, 14-Jan-2015.)
(A Nn ↔ (A = 0c x Nn A = (x +c 1c)))
 
Theoremelsuc 4414* Membership in a successor. Theorem X.1.16 of [Rosser] p. 279. (Contributed by SF, 16-Jan-2015.)
(A (M +c 1c) ↔ b M x bA = (b ∪ {x}))
 
Theoremelsuci 4415 Lemma for ncfinraise 4482. Take a natural and a disjoint union and compute membership in the successor natural. (Contributed by SF, 22-Jan-2015.)
X V       ((A N ¬ X A) → (A ∪ {X}) (N +c 1c))
 
Theoremaddcass 4416 Cardinal addition is associative. Theorem X.1.11, corollary 1 of [Rosser] p. 277. (Contributed by SF, 17-Jan-2015.)
((A +c B) +c C) = (A +c (B +c C))
 
Theoremaddc32 4417 Swap arguments two and three in cardinal addition. (Contributed by SF, 22-Jan-2015.)
((A +c B) +c C) = ((A +c C) +c B)
 
Theoremaddc4 4418 Swap arguments two and three in quadruple cardinal addition. (Contributed by SF, 25-Jan-2015.)
((A +c B) +c (C +c D)) = ((A +c C) +c (B +c D))
 
Theoremaddc6 4419 Rearrange cardinal summation of six arguments. (Contributed by SF, 13-Mar-2015.)
(((A +c B) +c (C +c D)) +c (E +c F)) = (((A +c C) +c E) +c ((B +c D) +c F))
 
Theoremnncaddccl 4420 The finite cardinals are closed under addition. Theorem X.1.14 of [Rosser] p. 278. (Contributed by SF, 17-Jan-2015.)
((A Nn B Nn ) → (A +c B) Nn )
 
Theoremelfin 4421* Membership in the set of finite sets. (Contributed by SF, 19-Jan-2015.)
(A Finx Nn A x)
 
Theoremel0c 4422 Membership in cardinal zero. (Contributed by SF, 22-Jan-2015.)
(A 0cA = )
 
Theoremnulel0c 4423 The empty set is a member of cardinal zero. (Contributed by SF, 13-Feb-2015.)
0c
 
Theorem0fin 4424 The empty set is finite. (Contributed by SF, 19-Jan-2015.)
Fin
 
Theoremnnsucelrlem1 4425* Lemma for nnsucelr 4429. Establish stratification for the inductive hypothesis. (Contributed by SF, 15-Jan-2015.)
{m ax((¬ x a (a ∪ {x}) (m +c 1c)) → a m)} V
 
Theoremnnsucelrlem2 4426 Lemma for nnsucelr 4429. Subtracting a non-element from a set adjoined with the non-element retrieves the original set. (Contributed by SF, 15-Jan-2015.)
B A → ((A ∪ {B}) {B}) = A)
 
Theoremnnsucelrlem3 4427 Lemma for nnsucelr 4429. Rearrange union and difference for a particular group of classes. (Contributed by SF, 15-Jan-2015.)
X V       ((XY (A ∪ {X}) = (B ∪ {Y}) ¬ Y B) → B = ((A {Y}) ∪ {X}))
 
Theoremnnsucelrlem4 4428 Lemma for nnsucelr 4429. Remove and re-adjoin an element to a set. (Contributed by SF, 15-Jan-2015.)
(A B → ((B {A}) ∪ {A}) = B)
 
Theoremnnsucelr 4429 Transfer membership in the successor of a natural into membership of the natural itself. Theorem X.1.17 of [Rosser] p. 525. (Contributed by SF, 14-Jan-2015.)
A V    &   X V       ((M Nn X A (A ∪ {X}) (M +c 1c))) → A M)
 
Theoremnndisjeq 4430 Either two naturals are disjoint or they are the same natural. Theorem X.1.18 of [Rosser] p. 526. (Contributed by SF, 17-Jan-2015.)
((M Nn N Nn ) → ((MN) = M = N))
 
Theoremnnceleq 4431 If two naturals have an element in common, then they are equal. (Contributed by SF, 13-Feb-2015.)
(((M Nn N Nn ) (A M A N)) → M = N)
 
Theoremsnfi 4432 A singleton is finite. (Contributed by SF, 23-Feb-2015.)
{A} Fin
 
2.2.11  Deriving infinity
 
Syntaxclefin 4433 Extend class notation to include the less than or equal to relationship for finite cardinals.
class fin
 
Syntaxcltfin 4434 Extend class notation to include the less than relationship for finite cardinals.
class <fin
 
Syntaxcncfin 4435 Extend class notation to include the finite cardinal function.
class Ncfin A
 
Syntaxctfin 4436 Extend class notation to include the finite T operation.
class Tfin A
 
Syntaxcevenfin 4437 Extend class notation to include the (temporary) set of all even numbers.
class Evenfin
 
Syntaxcoddfin 4438 Extend class notation to include the (temporary) set of all odd numbers.
class Oddfin
 
Syntaxwsfin 4439 Extend wff notation to include the finite S relationship.
wff Sfin (A, B)
 
Syntaxcspfin 4440 Extend class notation to include the finite Sp set.
class Spfin
 
Definitiondf-lefin 4441* Define the less than or equal to relationship for finite cardinals. Definition from Ex. X.1.4 of [Rosser] p. 279. (Contributed by SF, 12-Jan-2015.)
fin = {x yz(x = ⟪y, z w Nn z = (y +c w))}
 
Definitiondf-ltfin 4442* Define the less than relationship for finite cardinals. Definition from [Rosser] p. 527. (Contributed by SF, 12-Jan-2015.)
<fin = {x mn(x = ⟪m, n (m p Nn n = ((m +c p) +c 1c)))}
 
Definitiondf-ncfin 4443* Define the finite cardinal function. Definition from [Rosser] p. 527. (Contributed by SF, 12-Jan-2015.)
Ncfin A = (℩x(x Nn A x))
 
Definitiondf-tfin 4444* Define the finite T operator. Definition from [Rosser] p. 528. (Contributed by SF, 12-Jan-2015.)
Tfin M = if(M = , , (℩n(n Nn a M 1a n)))
 
Definitiondf-evenfin 4445* Define the temporary set of all even numbers. This differs from the final definition due to the non-null condition. Definition from [Rosser] p. 529. (Contributed by SF, 12-Jan-2015.)
Evenfin = {x (n Nn x = (n +c n) x)}
 
Definitiondf-oddfin 4446* Define the temporary set of all odd numbers. This differs from the final definition due to the non-null condition. Definition from [Rosser] p. 529. (Contributed by SF, 12-Jan-2015.)
Oddfin = {x (n Nn x = ((n +c n) +c 1c) x)}
 
Definitiondf-sfin 4447* Define the finite S relationship. This relationship encapsulates the idea of M being a "smaller" number than N. Definition from [Rosser] p. 530. (Contributed by SF, 12-Jan-2015.)
( Sfin (M, N) ↔ (M Nn N Nn a(1a M a N)))
 
Definitiondf-spfin 4448* Define the finite Sp set. Definition from [Rosser] p. 533. (Contributed by SF, 12-Jan-2015.)
Spfin = {a ( Ncfin V a x a z( Sfin (z, x) → z a))}
 
Theoremopklefing 4449* Kuratowski ordered pair membership in finite less than or equal to. (Contributed by SF, 18-Jan-2015.)
((A V B W) → (⟪A, Bfinx Nn B = (A +c x)))
 
Theoremopkltfing 4450* Kuratowski ordered pair membership in finite less than. (Contributed by SF, 27-Jan-2015.)
((A V B W) → (⟪A, B <fin ↔ (A x Nn B = ((A +c x) +c 1c))))
 
Theoremlefinaddc 4451 Cardinal sum always yields a larger set. (Contributed by SF, 27-Jan-2015.)
((A V N Nn ) → ⟪A, (A +c N)⟫ fin )
 
Theoremprepeano4 4452 Assuming a non-null successor, cardinal successor is one-to-one. Theorem X.1.19 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.)
(((M Nn N Nn ) ((M +c 1c) = (N +c 1c) (M +c 1c) ≠ )) → M = N)
 
Theoremaddcnul1 4453 Cardinal addition with the empty set. Theorem X.1.20, corollary 1 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.)
(A +c ) =
 
Theoremaddcnnul 4454 If cardinal addition is nonempty, then both addends are nonempty. Theorem X.1.20 of [Rosser] p. 526. (Contributed by SF, 18-Jan-2015.)
((A +c B) ≠ → (A B))
 
Theorempreaddccan2lem1 4455* Lemma for preaddccan2 4456. Establish stratification for the induction step. (Contributed by SF, 30-Mar-2021.)
((N Nn P Nn ) → {m (((m +c N) ≠ (m +c N) = (m +c P)) → N = P)} V)
 
Theorempreaddccan2 4456 Cancellation law for natural addition with a non-null condition. (Contributed by SF, 29-Jan-2015.)
(((M Nn N Nn P Nn ) (M +c N) ≠ ) → ((M +c N) = (M +c P) ↔ N = P))
 
Theoremnulge 4457 If the empty set is a finite cardinal, then it is a maximal element. (Contributed by SF, 19-Jan-2015.)
(( Nn A V) → ⟪A, fin )
 
Theoremltfinirr 4458 Irreflexive law for finite less than. (Contributed by SF, 29-Jan-2015.)
(A Nn → ¬ ⟪A, A <fin )
 
Theoremleltfintr 4459 Transitivity law for finite less than and less than or equal. (Contributed by SF, 2-Feb-2015.)
((A Nn B Nn C Nn ) → ((⟪A, Bfin B, C <fin ) → ⟪A, C <fin ))
 
Theoremltfintr 4460 Transitivity law for finite less than. (Contributed by SF, 29-Jan-2015.)
((A Nn B Nn C Nn ) → ((⟪A, B <fin B, C <fin ) → ⟪A, C <fin ))
 
Theoremltfinasym 4461 Asymmetry law for finite less than. (Contributed by SF, 29-Jan-2015.)
((A Nn B Nn ) → (⟪A, B <fin → ¬ ⟪B, A <fin ))
 
Theorem0cminle 4462 Cardinal zero is a minimal element for finite less than or equal. (Contributed by SF, 29-Jan-2015.)
(A Nn → ⟪0c, Afin )
 
Theoremltfinp1 4463 One plus a finite cardinal is strictly greater. (Contributed by SF, 29-Jan-2015.)
((A V A) → ⟪A, (A +c 1c)⟫ <fin )
 
Theoremlefinlteq 4464 Transfer from less than or equal to less than. (Contributed by SF, 29-Jan-2015.)
((A V B W A) → (⟪A, Bfin ↔ (⟪A, B <fin A = B)))
 
Theoremltfinex 4465 Finite less than is stratified. (Contributed by SF, 29-Jan-2015.)
<fin V
 
Theoremltfintrilem1 4466* Lemma for ltfintri 4467. Establish stratification for induction. (Contributed by SF, 29-Jan-2015.)
{m (n Nn → (m → (⟪m, n <fin m = n n, m <fin )))} V
 
Theoremltfintri 4467 Trichotomy law for finite less than. (Contributed by SF, 29-Jan-2015.)
((M Nn N Nn M) → (⟪M, N <fin M = N N, M <fin ))
 
Theoremlefinrflx 4468 Less than or equal to is reflexive. (Contributed by SF, 2-Feb-2015.)
(A V → ⟪A, Afin )
 
Theoremltlefin 4469 Less than implies less than or equal. (Contributed by SF, 2-Feb-2015.)
((A V B W) → (⟪A, B <fin → ⟪A, Bfin ))
 
Theoremlenltfin 4470 Less than or equal is the same as negated less than. (Contributed by SF, 2-Feb-2015.)
((A Nn B Nn ) → (⟪A, Bfin ↔ ¬ ⟪B, A <fin ))
 
Theoremssfin 4471 A subset of a finite set is itself finite. Theorem X.1.21 of [Rosser] p. 527. (Contributed by SF, 19-Jan-2015.)
((A V B Fin A B) → A Fin )
 
Theoremvfinnc 4472* If the universe is finite, then there is a unique natural containing any set. Theorem X.1.22 of [Rosser] p. 527. (Contributed by SF, 19-Jan-2015.)
((A V V Fin ) → ∃!x Nn A x)
 
Theoremncfinex 4473 The finite cardinality of a set exists. (Contributed by SF, 27-Jan-2015.)
Ncfin A V
 
Theoremncfineq 4474 Equality theorem for finite cardinality. (Contributed by SF, 20-Jan-2015.)
(A = BNcfin A = Ncfin B)
 
Theoremncfinprop 4475 Properties of finite cardinal number. Theorem X.1.23 of [Rosser] p. 527 (Contributed by SF, 20-Jan-2015.)
((V Fin A V) → ( Ncfin A Nn A Ncfin A))
 
Theoremncfindi 4476 Distribution law for finite cardinality. (Contributed by SF, 30-Jan-2015.)
(((V Fin A V) B W (AB) = ) → Ncfin (AB) = ( Ncfin A +c Ncfin B))
 
Theoremncfinsn 4477 If the universe is finite, then the cardinality of a singleton is 1c. (Contributed by SF, 30-Jan-2015.)
((V Fin A V) → Ncfin {A} = 1c)
 
Theoremncfineleq 4478 Equality law for finite cardinality. Theorem X.1.24 of [Rosser] p. 527. (Contributed by SF, 20-Jan-2015.)
((V Fin A V B W) → (A Ncfin BNcfin A = Ncfin B))
 
Theoremeqpwrelk 4479 Represent equality to power class via a Kuratowski relationship. (Contributed by SF, 26-Jan-2015.)
A V    &   B V       (⟪{A}, B ∼ (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ B = A)
 
Theoremeqpw1relk 4480 Represent equality to unit power class via a Kuratowski relationship. (Contributed by SF, 21-Jan-2015.)
A V    &   B V       (⟪A, {B}⟫ ((1c ×k V) (( Ins3k SkIns2k SIk Sk ) “k 1111c)) ↔ A = 1B)
 
Theoremncfinraiselem2 4481* Lemma for ncfinraise 4482. Show stratification for induction. (Contributed by SF, 22-Jan-2015.)
{m a m b m n Nn (1a n 1b n)} V
 
Theoremncfinraise 4482* If two sets are in a particular finite cardinal, then their unit power sets are in the same natural. Theorem X.1.25 of [Rosser] p. 527. (Contributed by SF, 21-Jan-2015.)
((M Nn A M B M) → n Nn (1A n 1B n))
 
Theoremncfinlowerlem1 4483* Lemma for ncfinlower 4484. Set up stratification for induction. (Contributed by SF, 22-Jan-2015.)
{m ab((1a m 1b m) → n Nn (a n b n))} V
 
Theoremncfinlower 4484* If the unit power classes of two sets are in the same natural, then so are the sets themselves. Theorem X.1.26 of [Rosser] p. 527. (Contributed by SF, 22-Jan-2015.)
((M Nn 1A M 1B M) → n Nn (A n B n))
 
Theoremnnpw1ex 4485* For any nonempty finite cardinal, there is a unique natural containing a unit power class of one of its elements. Theorem X.1.27 of [Rosser] p. 528. (Contributed by SF, 22-Jan-2015.)
((M Nn M) → ∃!n Nn a M 1a n)
 
Theoremtfinex 4486 The finite T operator is always a set. (Contributed by SF, 26-Jan-2015.)
Tfin A V
 
Theoremeqtfinrelk 4487 Equality to a T raising expressed via a Kuratowski relationship. (Contributed by SF, 29-Jan-2015.)
M V    &   X V       (⟪{M}, X (({{}} ×k {}) ∪ ( ∼ (( Ins2k SkIns3k (( Ins3k k Sk Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk SkIns3k (( Ins3k SIk ((1c ×k V) (( Ins3k SkIns2k SIk Sk ) “k 1111c)) ∩ Ins2k Sk ) “k 111c)) “k 1111c)) ⊕ Ins3k Ik ) “k 11c)) “k 11c)) “k 111c) ({{}} ×k V))) ↔ X = Tfin M)
 
Theoremtfinrelkex 4488 The expression at the core of eqtfinrelk 4487 exists. (Contributed by SF, 30-Jan-2015.)
(({{}} ×k {}) ∪ ( ∼ (( Ins2k SkIns3k (( Ins3k k Sk Ins2k (( Ins2k (( Nn ×k V) ∩ (( Ins2k SIk SkIns3k (( Ins3k SIk ((1c ×k V) (( Ins3k SkIns2k SIk Sk ) “k 1111c)) ∩ Ins2k Sk ) “k 111c)) “k 1111c)) ⊕ Ins3k Ik ) “k 11c)) “k 11c)) “k 111c) ({{}} ×k V))) V
 
Theoremtfineq 4489 Equality theorem for the finite T operator. (Contributed by SF, 24-Jan-2015.)
(A = BTfin A = Tfin B)
 
Theoremtfinprop 4490* Properties of the finite T operator for a nonempty natural. Theorem X.1.28 of [Rosser] p. 528. (Contributed by SF, 22-Jan-2015.)
((M Nn M) → ( Tfin M Nn a M 1a Tfin M))
 
Theoremtfinnnul 4491 If M is a nonempty natural, then Tfin M is also nonempty. Corollary 1 of Theorem X.1.28 of [Rosser] p. 528. (Contributed by SF, 23-Jan-2015.)
((M Nn M) → Tfin M)
 
Theoremtfinnul 4492 The finite T operator applied to the empty set is empty. Theorem X.1.29 of [Rosser] p. 528. (Contributed by SF, 22-Jan-2015.)
Tfin =
 
Theoremtfincl 4493 Closure law for finite T operation. (Contributed by SF, 2-Feb-2015.)
(N NnTfin N Nn )
 
Theoremtfin11 4494 The finite T operator is one-to-one over the naturals. Theorem X.1.30 of [Rosser] p. 528. (Contributed by SF, 24-Jan-2015.)
((M Nn N Nn Tfin M = Tfin N) → M = N)
 
Theoremtfinpw1 4495 The finite T operator on a natural contains the unit power class of any element of the natural. Theorem X.1.31 of [Rosser] p. 528. (Contributed by SF, 24-Jan-2015.)
((M Nn A M) → 1A Tfin M)
 
Theoremncfintfin 4496 Relationship between finite T operator and finite Nc operation in a finite universe. Corollary of Theorem X.1.31 of [Rosser] p. 529. (Contributed by SF, 24-Jan-2015.)
((V Fin A V) → Tfin Ncfin A = Ncfin 1A)
 
Theoremtfindi 4497 The finite T operation distributes over nonempty cardinal sum. Theorem X.1.32 of [Rosser] p. 529. (Contributed by SF, 26-Jan-2015.)
((M Nn N Nn (M +c N) ≠ ) → Tfin (M +c N) = ( Tfin M +c Tfin N))
 
Theoremtfin0c 4498 The finite T operator is fixed at 0c. (Contributed by SF, 29-Jan-2015.)
Tfin 0c = 0c
 
Theoremtfinsuc 4499 The finite T operator over a successor. (Contributed by SF, 30-Jan-2015.)
((A Nn (A +c 1c) ≠ ) → Tfin (A +c 1c) = ( Tfin A +c 1c))
 
Theoremtfin1c 4500 The finite T operator is idempotent over 1c. Theorem X.1.34(a) of [Rosser] p. 529. (Contributed by SF, 30-Jan-2015.)
Tfin 1c = 1c
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >