Detailed syntax breakdown of Definition df-ltfin
| Step | Hyp | Ref
| Expression |
| 1 | | cltfin 4434 |
. 2
class <fin |
| 2 | | vx |
. . . . . . . 8
setvar x |
| 3 | 2 | cv 1641 |
. . . . . . 7
class x |
| 4 | | vm |
. . . . . . . . 9
setvar m |
| 5 | 4 | cv 1641 |
. . . . . . . 8
class m |
| 6 | | vn |
. . . . . . . . 9
setvar n |
| 7 | 6 | cv 1641 |
. . . . . . . 8
class n |
| 8 | 5, 7 | copk 4058 |
. . . . . . 7
class ⟪m, n⟫ |
| 9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
⟪m, n⟫ |
| 10 | | c0 3551 |
. . . . . . . 8
class ∅ |
| 11 | 5, 10 | wne 2517 |
. . . . . . 7
wff m
≠ ∅ |
| 12 | | vp |
. . . . . . . . . . . 12
setvar p |
| 13 | 12 | cv 1641 |
. . . . . . . . . . 11
class p |
| 14 | 5, 13 | cplc 4376 |
. . . . . . . . . 10
class (m +c p) |
| 15 | | c1c 4135 |
. . . . . . . . . 10
class 1c |
| 16 | 14, 15 | cplc 4376 |
. . . . . . . . 9
class ((m +c p) +c
1c) |
| 17 | 7, 16 | wceq 1642 |
. . . . . . . 8
wff n =
((m +c p) +c
1c) |
| 18 | | cnnc 4374 |
. . . . . . . 8
class Nn |
| 19 | 17, 12, 18 | wrex 2616 |
. . . . . . 7
wff ∃p ∈ Nn n = ((m
+c p)
+c 1c) |
| 20 | 11, 19 | wa 358 |
. . . . . 6
wff (m
≠ ∅ ∧
∃p ∈ Nn n = ((m
+c p)
+c 1c)) |
| 21 | 9, 20 | wa 358 |
. . . . 5
wff (x
= ⟪m, n⟫ ∧
(m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
| 22 | 21, 6 | wex 1541 |
. . . 4
wff ∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
| 23 | 22, 4 | wex 1541 |
. . 3
wff ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
| 24 | 23, 2 | cab 2339 |
. 2
class {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |
| 25 | 1, 24 | wceq 1642 |
1
wff <fin = {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |