Detailed syntax breakdown of Definition df-ltfin
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cltfin 4434 | 
. 2
class  <fin | 
| 2 |   | vx | 
. . . . . . . 8
setvar x | 
| 3 | 2 | cv 1641 | 
. . . . . . 7
class x | 
| 4 |   | vm | 
. . . . . . . . 9
setvar m | 
| 5 | 4 | cv 1641 | 
. . . . . . . 8
class m | 
| 6 |   | vn | 
. . . . . . . . 9
setvar n | 
| 7 | 6 | cv 1641 | 
. . . . . . . 8
class n | 
| 8 | 5, 7 | copk 4058 | 
. . . . . . 7
class ⟪m, n⟫ | 
| 9 | 3, 8 | wceq 1642 | 
. . . . . 6
wff x =
⟪m, n⟫ | 
| 10 |   | c0 3551 | 
. . . . . . . 8
class ∅ | 
| 11 | 5, 10 | wne 2517 | 
. . . . . . 7
wff m
≠ ∅ | 
| 12 |   | vp | 
. . . . . . . . . . . 12
setvar p | 
| 13 | 12 | cv 1641 | 
. . . . . . . . . . 11
class p | 
| 14 | 5, 13 | cplc 4376 | 
. . . . . . . . . 10
class (m +c p) | 
| 15 |   | c1c 4135 | 
. . . . . . . . . 10
class 1c | 
| 16 | 14, 15 | cplc 4376 | 
. . . . . . . . 9
class ((m +c p) +c
1c) | 
| 17 | 7, 16 | wceq 1642 | 
. . . . . . . 8
wff n =
((m +c p) +c
1c) | 
| 18 |   | cnnc 4374 | 
. . . . . . . 8
class  Nn | 
| 19 | 17, 12, 18 | wrex 2616 | 
. . . . . . 7
wff ∃p ∈ Nn n = ((m
+c p)
+c 1c) | 
| 20 | 11, 19 | wa 358 | 
. . . . . 6
wff (m
≠ ∅ ∧
∃p ∈ Nn n = ((m
+c p)
+c 1c)) | 
| 21 | 9, 20 | wa 358 | 
. . . . 5
wff (x
= ⟪m, n⟫ ∧
(m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) | 
| 22 | 21, 6 | wex 1541 | 
. . . 4
wff ∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) | 
| 23 | 22, 4 | wex 1541 | 
. . 3
wff ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) | 
| 24 | 23, 2 | cab 2339 | 
. 2
class {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} | 
| 25 | 1, 24 | wceq 1642 | 
1
wff  <fin = {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |