Detailed syntax breakdown of Definition df-ltfin
Step | Hyp | Ref
| Expression |
1 | | cltfin 4434 |
. 2
class <fin |
2 | | vx |
. . . . . . . 8
setvar x |
3 | 2 | cv 1641 |
. . . . . . 7
class x |
4 | | vm |
. . . . . . . . 9
setvar m |
5 | 4 | cv 1641 |
. . . . . . . 8
class m |
6 | | vn |
. . . . . . . . 9
setvar n |
7 | 6 | cv 1641 |
. . . . . . . 8
class n |
8 | 5, 7 | copk 4058 |
. . . . . . 7
class ⟪m, n⟫ |
9 | 3, 8 | wceq 1642 |
. . . . . 6
wff x =
⟪m, n⟫ |
10 | | c0 3551 |
. . . . . . . 8
class ∅ |
11 | 5, 10 | wne 2517 |
. . . . . . 7
wff m
≠ ∅ |
12 | | vp |
. . . . . . . . . . . 12
setvar p |
13 | 12 | cv 1641 |
. . . . . . . . . . 11
class p |
14 | 5, 13 | cplc 4376 |
. . . . . . . . . 10
class (m +c p) |
15 | | c1c 4135 |
. . . . . . . . . 10
class 1c |
16 | 14, 15 | cplc 4376 |
. . . . . . . . 9
class ((m +c p) +c
1c) |
17 | 7, 16 | wceq 1642 |
. . . . . . . 8
wff n =
((m +c p) +c
1c) |
18 | | cnnc 4374 |
. . . . . . . 8
class Nn |
19 | 17, 12, 18 | wrex 2616 |
. . . . . . 7
wff ∃p ∈ Nn n = ((m
+c p)
+c 1c) |
20 | 11, 19 | wa 358 |
. . . . . 6
wff (m
≠ ∅ ∧
∃p ∈ Nn n = ((m
+c p)
+c 1c)) |
21 | 9, 20 | wa 358 |
. . . . 5
wff (x
= ⟪m, n⟫ ∧
(m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
22 | 21, 6 | wex 1541 |
. . . 4
wff ∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
23 | 22, 4 | wex 1541 |
. . 3
wff ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c))) |
24 | 23, 2 | cab 2339 |
. 2
class {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |
25 | 1, 24 | wceq 1642 |
1
wff <fin = {x ∣ ∃m∃n(x = ⟪m,
n⟫ ∧ (m ≠ ∅ ∧ ∃p ∈ Nn n = ((m
+c p)
+c 1c)))} |