NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-ref GIF version

Definition df-ref 5901
Description: Define the set of all reflexive relationships over a base set. (Contributed by SF, 19-Feb-2015.)
Assertion
Ref Expression
df-ref Ref = {r, a x a xrx}
Distinct variable group:   r,a,x

Detailed syntax breakdown of Definition df-ref
StepHypRef Expression
1 cref 5890 . 2 class Ref
2 vx . . . . . 6 setvar x
32cv 1641 . . . . 5 class x
4 vr . . . . . 6 setvar r
54cv 1641 . . . . 5 class r
63, 3, 5wbr 4640 . . . 4 wff xrx
7 va . . . . 5 setvar a
87cv 1641 . . . 4 class a
96, 2, 8wral 2615 . . 3 wff x a xrx
109, 4, 7copab 4623 . 2 class {r, a x a xrx}
111, 10wceq 1642 1 wff Ref = {r, a x a xrx}
Colors of variables: wff setvar class
This definition is referenced by:  refex  5912  refrd  5927  refd  5928
  Copyright terms: Public domain W3C validator