Step | Hyp | Ref
| Expression |
1 | | df-ref 5901 |
. . 3
⊢ Ref = {⟨r, a⟩ ∣ ∀x ∈ a xrx} |
2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ ⟨r, a⟩ ∈ V |
5 | 4 | elcompl 3226 |
. . . . 5
⊢ (⟨r, a⟩ ∈ ∼ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) ↔ ¬ ⟨r, a⟩ ∈ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c)) |
6 | | elima1c 4948 |
. . . . . . . 8
⊢ (⟨r, a⟩ ∈ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) ↔ ∃x⟨{x}, ⟨r, a⟩⟩ ∈ ( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S )) |
7 | | oteltxp 5783 |
. . . . . . . . . 10
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ ( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S ) ↔ (⟨{x}, r⟩ ∈ ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ∧ ⟨{x}, a⟩ ∈ S
)) |
8 | | snex 4112 |
. . . . . . . . . . . . . 14
⊢ {x} ∈
V |
9 | 8, 2 | opex 4589 |
. . . . . . . . . . . . 13
⊢ ⟨{x}, r⟩ ∈ V |
10 | 9 | elcompl 3226 |
. . . . . . . . . . . 12
⊢ (⟨{x}, r⟩ ∈ ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ↔ ¬ ⟨{x}, r⟩ ∈ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c)) |
11 | | elima1c 4948 |
. . . . . . . . . . . . . 14
⊢ (⟨{x}, r⟩ ∈ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ↔ ∃p⟨{p}, ⟨{x}, r⟩⟩ ∈ ( SI (1st ∩ 2nd ) ⊗
S )) |
12 | | oteltxp 5783 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{p}, ⟨{x}, r⟩⟩ ∈ ( SI (1st ∩ 2nd ) ⊗
S ) ↔ (⟨{p}, {x}⟩ ∈ SI (1st
∩ 2nd ) ∧ ⟨{p}, r⟩ ∈ S
)) |
13 | | vex 2863 |
. . . . . . . . . . . . . . . . . . 19
⊢ p ∈
V |
14 | | vex 2863 |
. . . . . . . . . . . . . . . . . . 19
⊢ x ∈
V |
15 | 13, 14 | opsnelsi 5775 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟨{p}, {x}⟩ ∈ SI (1st
∩ 2nd ) ↔ ⟨p, x⟩ ∈
(1st ∩ 2nd )) |
16 | | elin 3220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⟨p, x⟩ ∈ (1st ∩ 2nd ) ↔
(⟨p,
x⟩ ∈ 1st ∧
⟨p,
x⟩ ∈ 2nd )) |
17 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (p1st x ↔ ⟨p, x⟩ ∈
1st ) |
18 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (p2nd x ↔ ⟨p, x⟩ ∈
2nd ) |
19 | 17, 18 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((p1st x ∧ p2nd x) ↔ (⟨p, x⟩ ∈ 1st ∧
⟨p,
x⟩ ∈ 2nd )) |
20 | 14, 14 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((p1st x ∧ p2nd x) ↔ p =
⟨x,
x⟩) |
21 | 16, 19, 20 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟨p, x⟩ ∈ (1st ∩ 2nd ) ↔
p = ⟨x, x⟩) |
22 | 15, 21 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (⟨{p}, {x}⟩ ∈ SI (1st
∩ 2nd ) ↔ p = ⟨x, x⟩) |
23 | 13, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . 17
⊢ (⟨{p}, r⟩ ∈ S ↔ p ∈ r) |
24 | 22, 23 | anbi12i 678 |
. . . . . . . . . . . . . . . 16
⊢ ((⟨{p}, {x}⟩ ∈ SI (1st
∩ 2nd ) ∧ ⟨{p}, r⟩ ∈ S ) ↔
(p = ⟨x, x⟩ ∧ p ∈ r)) |
25 | 12, 24 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (⟨{p}, ⟨{x}, r⟩⟩ ∈ ( SI (1st ∩ 2nd ) ⊗
S ) ↔ (p
= ⟨x,
x⟩ ∧ p ∈ r)) |
26 | 25 | exbii 1582 |
. . . . . . . . . . . . . 14
⊢ (∃p⟨{p}, ⟨{x}, r⟩⟩ ∈ ( SI (1st ∩ 2nd ) ⊗
S ) ↔ ∃p(p = ⟨x, x⟩ ∧ p ∈ r)) |
27 | 11, 26 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (⟨{x}, r⟩ ∈ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ↔ ∃p(p = ⟨x, x⟩ ∧ p ∈ r)) |
28 | | df-br 4641 |
. . . . . . . . . . . . . 14
⊢ (xrx ↔ ⟨x, x⟩ ∈ r) |
29 | | df-clel 2349 |
. . . . . . . . . . . . . 14
⊢ (⟨x, x⟩ ∈ r ↔
∃p(p = ⟨x, x⟩ ∧ p ∈ r)) |
30 | 28, 29 | bitri 240 |
. . . . . . . . . . . . 13
⊢ (xrx ↔ ∃p(p = ⟨x, x⟩ ∧ p ∈ r)) |
31 | 27, 30 | bitr4i 243 |
. . . . . . . . . . . 12
⊢ (⟨{x}, r⟩ ∈ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ↔ xrx) |
32 | 10, 31 | xchbinx 301 |
. . . . . . . . . . 11
⊢ (⟨{x}, r⟩ ∈ ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ↔ ¬ xrx) |
33 | 14, 3 | opelssetsn 4761 |
. . . . . . . . . . 11
⊢ (⟨{x}, a⟩ ∈ S ↔ x ∈ a) |
34 | 32, 33 | anbi12ci 679 |
. . . . . . . . . 10
⊢ ((⟨{x}, r⟩ ∈ ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ∧ ⟨{x}, a⟩ ∈ S ) ↔
(x ∈
a ∧ ¬
xrx)) |
35 | 7, 34 | bitri 240 |
. . . . . . . . 9
⊢ (⟨{x}, ⟨r, a⟩⟩ ∈ ( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S ) ↔ (x ∈ a ∧ ¬ xrx)) |
36 | 35 | exbii 1582 |
. . . . . . . 8
⊢ (∃x⟨{x}, ⟨r, a⟩⟩ ∈ ( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S ) ↔ ∃x(x ∈ a ∧ ¬ xrx)) |
37 | 6, 36 | bitri 240 |
. . . . . . 7
⊢ (⟨r, a⟩ ∈ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) ↔ ∃x(x ∈ a ∧ ¬ xrx)) |
38 | | df-rex 2621 |
. . . . . . 7
⊢ (∃x ∈ a ¬
xrx ↔ ∃x(x ∈ a ∧ ¬ xrx)) |
39 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬
xrx ↔ ¬
∀x
∈ a
xrx) |
40 | 37, 38, 39 | 3bitr2i 264 |
. . . . . 6
⊢ (⟨r, a⟩ ∈ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) ↔ ¬ ∀x ∈ a xrx) |
41 | 40 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a xrx ↔ ¬ ⟨r, a⟩ ∈ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c)) |
42 | 5, 41 | bitr4i 243 |
. . . 4
⊢ (⟨r, a⟩ ∈ ∼ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) ↔ ∀x ∈ a xrx) |
43 | 42 | opabbi2i 4867 |
. . 3
⊢ ∼ (( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S ) “ 1c) =
{⟨r,
a⟩ ∣ ∀x ∈ a xrx} |
44 | 1, 43 | eqtr4i 2376 |
. 2
⊢ Ref = ∼ (( ∼ (( SI
(1st ∩ 2nd ) ⊗ S
) “ 1c) ⊗ S
) “ 1c) |
45 | | 1stex 4740 |
. . . . . . . . . 10
⊢ 1st
∈ V |
46 | | 2ndex 5113 |
. . . . . . . . . 10
⊢ 2nd
∈ V |
47 | 45, 46 | inex 4106 |
. . . . . . . . 9
⊢ (1st
∩ 2nd ) ∈ V |
48 | 47 | siex 4754 |
. . . . . . . 8
⊢ SI (1st ∩ 2nd ) ∈ V |
49 | | ssetex 4745 |
. . . . . . . 8
⊢ S ∈
V |
50 | 48, 49 | txpex 5786 |
. . . . . . 7
⊢ ( SI (1st ∩ 2nd ) ⊗
S ) ∈
V |
51 | | 1cex 4143 |
. . . . . . 7
⊢
1c ∈
V |
52 | 50, 51 | imaex 4748 |
. . . . . 6
⊢ (( SI (1st ∩ 2nd ) ⊗
S ) “ 1c) ∈ V |
53 | 52 | complex 4105 |
. . . . 5
⊢ ∼ (( SI (1st ∩ 2nd ) ⊗
S ) “ 1c) ∈ V |
54 | 53, 49 | txpex 5786 |
. . . 4
⊢ ( ∼ (( SI (1st ∩ 2nd ) ⊗
S ) “ 1c) ⊗ S ) ∈
V |
55 | 54, 51 | imaex 4748 |
. . 3
⊢ (( ∼ (( SI (1st ∩ 2nd ) ⊗
S ) “ 1c) ⊗ S ) “ 1c) ∈ V |
56 | 55 | complex 4105 |
. 2
⊢ ∼ (( ∼
(( SI (1st ∩ 2nd )
⊗ S ) “ 1c)
⊗ S ) “ 1c) ∈ V |
57 | 44, 56 | eqeltri 2423 |
1
⊢ Ref ∈
V |