Detailed syntax breakdown of Definition df-antisym
Step | Hyp | Ref
| Expression |
1 | | cantisym 5891 |
. 2
class Antisym |
2 | | vx |
. . . . . . . . 9
setvar x |
3 | 2 | cv 1641 |
. . . . . . . 8
class x |
4 | | vy |
. . . . . . . . 9
setvar y |
5 | 4 | cv 1641 |
. . . . . . . 8
class y |
6 | | vr |
. . . . . . . . 9
setvar r |
7 | 6 | cv 1641 |
. . . . . . . 8
class r |
8 | 3, 5, 7 | wbr 4640 |
. . . . . . 7
wff xry |
9 | 5, 3, 7 | wbr 4640 |
. . . . . . 7
wff yrx |
10 | 8, 9 | wa 358 |
. . . . . 6
wff (xry ∧ yrx) |
11 | 2, 4 | weq 1643 |
. . . . . 6
wff x =
y |
12 | 10, 11 | wi 4 |
. . . . 5
wff ((xry ∧ yrx) → x =
y) |
13 | | va |
. . . . . 6
setvar a |
14 | 13 | cv 1641 |
. . . . 5
class a |
15 | 12, 4, 14 | wral 2615 |
. . . 4
wff ∀y ∈ a ((xry ∧ yrx) → x =
y) |
16 | 15, 2, 14 | wral 2615 |
. . 3
wff ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y) |
17 | 16, 6, 13 | copab 4623 |
. 2
class {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) →
x = y)} |
18 | 1, 17 | wceq 1642 |
1
wff Antisym =
{〈r,
a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) →
x = y)} |