NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exp520 GIF version

Theorem exp520 1172
Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
Hypothesis
Ref Expression
exp520.1 (((φ ψ χ) (θ τ)) → η)
Assertion
Ref Expression
exp520 (φ → (ψ → (χ → (θ → (τη)))))

Proof of Theorem exp520
StepHypRef Expression
1 exp520.1 . . 3 (((φ ψ χ) (θ τ)) → η)
21ex 423 . 2 ((φ ψ χ) → ((θ τ) → η))
32exp5o 1170 1 (φ → (ψ → (χ → (θ → (τη)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator