New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-3an | GIF version |
Description: Define conjunction ('and') of three wff's. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 630. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3an | ⊢ ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | wps | . . 3 wff ψ | |
3 | wch | . . 3 wff χ | |
4 | 1, 2, 3 | w3a 934 | . 2 wff (φ ∧ ψ ∧ χ) |
5 | 1, 2 | wa 358 | . . 3 wff (φ ∧ ψ) |
6 | 5, 3 | wa 358 | . 2 wff ((φ ∧ ψ) ∧ χ) |
7 | 4, 6 | wb 176 | 1 wff ((φ ∧ ψ ∧ χ) ↔ ((φ ∧ ψ) ∧ χ)) |
Colors of variables: wff setvar class |
This definition is referenced by: 3anass 938 3anrot 939 3ancoma 941 3anan32 946 3anor 948 3ioran 950 3simpa 952 3pm3.2i 1130 pm3.2an3 1131 3jca 1132 3anbi123i 1140 3imp 1145 3anbi123d 1252 3anim123d 1259 an6 1261 cadan 1392 19.26-3an 1595 nf3and 1823 nf3an 1827 hb3anOLD 1831 eeeanv 1914 sb3an 2070 mopick2 2271 r19.26-3 2749 3reeanv 2780 ceqsex3v 2898 ceqsex4v 2899 ceqsex8v 2901 elin3 3448 raltpg 3778 tpss 3872 sikexlem 4296 dfpw12 4302 srelk 4525 br1stg 4731 elswap 4741 rabxp 4815 brinxp2 4836 brinxp 4837 brswap2 4861 dff1o3 5293 f1orn 5297 dff1o6 5476 oprabid 5551 eloprabga 5579 ndmovass 5619 dmpprod 5841 trrd 5926 porta 5934 lecex 6116 ovcelem1 6172 sbthlem3 6206 addccan2nclem1 6264 nmembers1lem1 6269 spacvallem1 6282 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |