New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi2 | GIF version |
Description: Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
Ref | Expression |
---|---|
imbi2 | ⊢ ((φ ↔ ψ) → ((χ → φ) ↔ (χ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((φ ↔ ψ) → (φ ↔ ψ)) | |
2 | 1 | imbi2d 307 | 1 ⊢ ((φ ↔ ψ) → ((χ → φ) ↔ (χ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3impexpbicom 1367 |
Copyright terms: Public domain | W3C validator |