New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi2d | GIF version |
Description: Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
imbi2d | ⊢ (φ → ((θ → ψ) ↔ (θ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (θ → (ψ ↔ χ))) |
3 | 2 | pm5.74d 238 | 1 ⊢ (φ → ((θ → ψ) ↔ (θ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: imbi12d 311 imbi2 314 pm5.42 531 orbi2d 682 con3th 924 19.23tOLD 1819 ax12olem6 1932 ax11v2 1992 ax15 2021 nfsb4t 2080 sbcom 2089 ax11vALT 2097 sbcom2 2114 ax11eq 2193 ax11el 2194 ax11indalem 2197 ax11inda2ALT 2198 ax11inda 2200 ax11v2-o 2201 mo 2226 2mo 2282 2eu6 2289 2gencl 2889 3gencl 2890 vtocl2gf 2917 vtocl3gf 2918 eqeu 3008 mo2icl 3016 euind 3024 reu7 3032 reuind 3040 sbctt 3109 sbcnestgf 3184 r19.36zv 3651 dedth2h 3705 dedth3h 3706 dedth4h 3707 elint 3933 elintrabg 3940 intab 3957 preq12bg 4129 nncaddccl 4420 nndisjeq 4430 ltfintri 4467 ssfin 4471 evenodddisjlem1 4516 evenodddisj 4517 nnadjoin 4521 tfinnn 4535 spfinsfincl 4540 spfininduct 4541 vtoclr 4817 raliunxp 4824 2optocl 4840 3optocl 4841 fneu 5188 fvelimab 5371 fnressn 5439 fressnfv 5440 f1fveq 5474 funsi 5521 ndmovcl 5615 caovcan 5629 caovord 5630 fvmptss 5706 trtxp 5782 oqelins4 5795 fntxp 5805 qrpprod 5837 fnpprod 5844 fnfullfunlem1 5857 frd 5923 2ecoptocl 5998 3ecoptocl 5999 sbthlem2 6205 leconnnc 6219 addcdi 6251 nchoicelem17 6306 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |