New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > imbi1i | GIF version |
Description: Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
Ref | Expression |
---|---|
imbi1i.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
imbi1i | ⊢ ((φ → χ) ↔ (ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi1i.1 | . 2 ⊢ (φ ↔ ψ) | |
2 | imbi1 313 | . 2 ⊢ ((φ ↔ ψ) → ((φ → χ) ↔ (ψ → χ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((φ → χ) ↔ (ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: imbi12i 316 imor 401 ancomsimp 1369 19.43 1605 19.37 1873 dfsb3 2056 sbor 2066 sbrim 2067 mo4f 2236 2mos 2283 neor 2601 r3al 2672 r19.23t 2729 r19.43 2767 ceqsralt 2883 ralab 2998 ralrab 2999 euind 3024 reu2 3025 rmo4 3030 reuind 3040 2reu5lem3 3044 rmo3 3134 unss 3438 ralunb 3445 inssdif0 3618 ssundif 3634 dfif2 3665 pwss 3737 ralsns 3764 disjsn 3787 snss 3839 unissb 3922 intun 3959 intpr 3960 dfiin2g 4001 eqpw1 4163 pw111 4171 ssrelk 4212 eqrelk 4213 elp6 4264 sikexlem 4296 insklem 4305 peano5 4410 ltfintrilem1 4466 evenodddisjlem1 4516 nnadjoin 4521 nnpweq 4524 raliunxp 4824 intirr 5030 dffun4 5122 dffun5 5123 dffun7 5134 fun11 5160 fununi 5161 dff13 5472 clos1induct 5881 dfnnc3 5886 enmap2lem4 6067 enmap1lem4 6073 spacind 6288 |
Copyright terms: Public domain | W3C validator |