NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  luklem8 GIF version

Theorem luklem8 1430
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luklem8 ((φψ) → ((χφ) → (χψ)))

Proof of Theorem luklem8
StepHypRef Expression
1 luk-1 1420 . 2 ((χφ) → ((φψ) → (χψ)))
2 luklem7 1429 . 2 (((χφ) → ((φψ) → (χψ))) → ((φψ) → ((χφ) → (χψ))))
31, 2ax-mp 5 1 ((φψ) → ((χφ) → (χψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  ax2  1432
  Copyright terms: Public domain W3C validator