| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > luklem8 | GIF version | ||
| Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| luklem8 | ⊢ ((φ → ψ) → ((χ → φ) → (χ → ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | luk-1 1420 | . 2 ⊢ ((χ → φ) → ((φ → ψ) → (χ → ψ))) | |
| 2 | luklem7 1429 | . 2 ⊢ (((χ → φ) → ((φ → ψ) → (χ → ψ))) → ((φ → ψ) → ((χ → φ) → (χ → ψ)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((φ → ψ) → ((χ → φ) → (χ → ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
| This theorem is referenced by: ax2 1432 |
| Copyright terms: Public domain | W3C validator |