Proof of Theorem luklem7
| Step | Hyp | Ref
| Expression |
| 1 | | luk-1 1420 |
. 2
⊢ ((φ → (ψ → χ)) → (((ψ → χ) → χ) → (φ → χ))) |
| 2 | | luklem5 1427 |
. . . . 5
⊢ (ψ → ((ψ → χ) → ψ)) |
| 3 | | luk-1 1420 |
. . . . 5
⊢ (((ψ → χ) → ψ) → ((ψ → χ) → ((ψ → χ) → χ))) |
| 4 | 2, 3 | luklem1 1423 |
. . . 4
⊢ (ψ → ((ψ → χ) → ((ψ → χ) → χ))) |
| 5 | | luklem6 1428 |
. . . 4
⊢ (((ψ → χ) → ((ψ → χ) → χ)) → ((ψ → χ) → χ)) |
| 6 | 4, 5 | luklem1 1423 |
. . 3
⊢ (ψ → ((ψ → χ) → χ)) |
| 7 | | luk-1 1420 |
. . 3
⊢ ((ψ → ((ψ → χ) → χ)) → ((((ψ → χ) → χ) → (φ → χ)) → (ψ → (φ → χ)))) |
| 8 | 6, 7 | ax-mp 5 |
. 2
⊢ ((((ψ → χ) → χ) → (φ → χ)) → (ψ → (φ → χ))) |
| 9 | 1, 8 | luklem1 1423 |
1
⊢ ((φ → (ψ → χ)) → (ψ → (φ → χ))) |