New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > luklem7 | GIF version |
Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
luklem7 | ⊢ ((φ → (ψ → χ)) → (ψ → (φ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | luk-1 1420 | . 2 ⊢ ((φ → (ψ → χ)) → (((ψ → χ) → χ) → (φ → χ))) | |
2 | luklem5 1427 | . . . . 5 ⊢ (ψ → ((ψ → χ) → ψ)) | |
3 | luk-1 1420 | . . . . 5 ⊢ (((ψ → χ) → ψ) → ((ψ → χ) → ((ψ → χ) → χ))) | |
4 | 2, 3 | luklem1 1423 | . . . 4 ⊢ (ψ → ((ψ → χ) → ((ψ → χ) → χ))) |
5 | luklem6 1428 | . . . 4 ⊢ (((ψ → χ) → ((ψ → χ) → χ)) → ((ψ → χ) → χ)) | |
6 | 4, 5 | luklem1 1423 | . . 3 ⊢ (ψ → ((ψ → χ) → χ)) |
7 | luk-1 1420 | . . 3 ⊢ ((ψ → ((ψ → χ) → χ)) → ((((ψ → χ) → χ) → (φ → χ)) → (ψ → (φ → χ)))) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((((ψ → χ) → χ) → (φ → χ)) → (ψ → (φ → χ))) |
9 | 1, 8 | luklem1 1423 | 1 ⊢ ((φ → (ψ → χ)) → (ψ → (φ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
This theorem is referenced by: luklem8 1430 ax2 1432 |
Copyright terms: Public domain | W3C validator |