New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax2 | GIF version |
Description: Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax2 | ⊢ ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | luklem7 1429 | . 2 ⊢ ((φ → (ψ → χ)) → (ψ → (φ → χ))) | |
2 | luklem8 1430 | . . 3 ⊢ ((ψ → (φ → χ)) → ((φ → ψ) → (φ → (φ → χ)))) | |
3 | luklem6 1428 | . . . 4 ⊢ ((φ → (φ → χ)) → (φ → χ)) | |
4 | luklem8 1430 | . . . 4 ⊢ (((φ → (φ → χ)) → (φ → χ)) → (((φ → ψ) → (φ → (φ → χ))) → ((φ → ψ) → (φ → χ)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (((φ → ψ) → (φ → (φ → χ))) → ((φ → ψ) → (φ → χ))) |
6 | 2, 5 | luklem1 1423 | . 2 ⊢ ((ψ → (φ → χ)) → ((φ → ψ) → (φ → χ))) |
7 | 1, 6 | luklem1 1423 | 1 ⊢ ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |