Proof of Theorem merco1lem1
Step | Hyp | Ref
| Expression |
1 | | merco1 1478 |
. . . . 5
⊢ ((((( ⊥ →
φ) → (φ → ⊥ )) → (φ → ⊥ )) → ( ⊥ →
φ)) → ((( ⊥ → φ) → ⊥ ) → (φ → ⊥ ))) |
2 | | merco1 1478 |
. . . . 5
⊢ (((((( ⊥
→ φ) → (φ → ⊥ )) → (φ → ⊥ )) → ( ⊥ →
φ)) → ((( ⊥ → φ) → ⊥ ) → (φ → ⊥ ))) → ((((( ⊥
→ φ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ)))) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ ((((( ⊥ →
φ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ))) |
4 | | merco1 1478 |
. . . 4
⊢ (((((( ⊥
→ φ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ))) → (((φ → ( ⊥ → φ)) → ( ⊥ → φ)) → (φ → ( ⊥ → φ)))) |
5 | 3, 4 | ax-mp 5 |
. . 3
⊢ (((φ → ( ⊥ → φ)) → ( ⊥ → φ)) → (φ → ( ⊥ → φ))) |
6 | | merco1 1478 |
. . . . 5
⊢ ((((( ⊥ →
φ) → (φ → ⊥ )) → ((φ → ( ⊥ → φ)) → ⊥ )) → (φ → ( ⊥ → φ))) → (((φ → ( ⊥ → φ)) → ⊥ ) → (φ → ⊥ ))) |
7 | | merco1 1478 |
. . . . 5
⊢ (((((( ⊥
→ φ) → (φ → ⊥ )) → ((φ → ( ⊥ → φ)) → ⊥ )) → (φ → ( ⊥ → φ))) → (((φ → ( ⊥ → φ)) → ⊥ ) → (φ → ⊥ ))) → (((((φ → ( ⊥ → φ)) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → φ)))) |
8 | 6, 7 | ax-mp 5 |
. . . 4
⊢ (((((φ → ( ⊥ → φ)) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → φ))) |
9 | | merco1 1478 |
. . . 4
⊢ ((((((φ → ( ⊥ → φ)) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → φ))) → ((((φ → ( ⊥ → φ)) → ( ⊥ → φ)) → (φ → ( ⊥ → φ))) → (φ → (φ → ( ⊥ → φ))))) |
10 | 8, 9 | ax-mp 5 |
. . 3
⊢ ((((φ → ( ⊥ → φ)) → ( ⊥ → φ)) → (φ → ( ⊥ → φ))) → (φ → (φ → ( ⊥ → φ)))) |
11 | 5, 10 | ax-mp 5 |
. 2
⊢ (φ → (φ → ( ⊥ → φ))) |
12 | | merco1 1478 |
. . . . 5
⊢ ((((( ⊥ →
φ) → (φ → ⊥ )) → (φ → ⊥ )) → ( ⊥ →
χ)) → ((( ⊥ → χ) → ⊥ ) → (φ → ⊥ ))) |
13 | | merco1 1478 |
. . . . 5
⊢ (((((( ⊥
→ φ) → (φ → ⊥ )) → (φ → ⊥ )) → ( ⊥ →
χ)) → ((( ⊥ → χ) → ⊥ ) → (φ → ⊥ ))) → ((((( ⊥
→ χ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ)))) |
14 | 12, 13 | ax-mp 5 |
. . . 4
⊢ ((((( ⊥ →
χ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ))) |
15 | | merco1 1478 |
. . . 4
⊢ (((((( ⊥
→ χ) → ⊥ ) → (φ → ⊥ )) → ( ⊥ →
φ)) → (φ → ( ⊥ → φ))) → (((φ → ( ⊥ → φ)) → ( ⊥ → χ)) → (φ → ( ⊥ → χ)))) |
16 | 14, 15 | ax-mp 5 |
. . 3
⊢ (((φ → ( ⊥ → φ)) → ( ⊥ → χ)) → (φ → ( ⊥ → χ))) |
17 | | merco1 1478 |
. . . . 5
⊢ ((((( ⊥ →
χ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ )) → ((φ → ( ⊥ → φ)) → ⊥ )) → (φ → ( ⊥ → χ))) → (((φ → ( ⊥ → χ)) → ⊥ ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ ))) |
18 | | merco1 1478 |
. . . . 5
⊢ (((((( ⊥
→ χ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ )) → ((φ → ( ⊥ → φ)) → ⊥ )) → (φ → ( ⊥ → χ))) → (((φ → ( ⊥ → χ)) → ⊥ ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ ))) → (((((φ → ( ⊥ → χ)) → ⊥ ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ )) → ( ⊥ →
χ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → χ)))) |
19 | 17, 18 | ax-mp 5 |
. . . 4
⊢ (((((φ → ( ⊥ → χ)) → ⊥ ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ )) → ( ⊥ →
χ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → χ))) |
20 | | merco1 1478 |
. . . 4
⊢ ((((((φ → ( ⊥ → χ)) → ⊥ ) → ((φ → (φ → ( ⊥ → φ))) → ⊥ )) → ( ⊥ →
χ)) → ((φ → ( ⊥ → φ)) → ( ⊥ → χ))) → ((((φ → ( ⊥ → φ)) → ( ⊥ → χ)) → (φ → ( ⊥ → χ))) → ((φ → (φ → ( ⊥ → φ))) → (φ → ( ⊥ → χ))))) |
21 | 19, 20 | ax-mp 5 |
. . 3
⊢ ((((φ → ( ⊥ → φ)) → ( ⊥ → χ)) → (φ → ( ⊥ → χ))) → ((φ → (φ → ( ⊥ → φ))) → (φ → ( ⊥ → χ)))) |
22 | 16, 21 | ax-mp 5 |
. 2
⊢ ((φ → (φ → ( ⊥ → φ))) → (φ → ( ⊥ → χ))) |
23 | 11, 22 | ax-mp 5 |
1
⊢ (φ → ( ⊥ → χ)) |