New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  merco1 GIF version

Theorem merco1 1478
 Description: A single axiom for propositional calculus offered by Meredith. This axiom is worthy of note, due to it having only 19 symbols, not counting parentheses. The more well-known meredith 1404 has 21 symbols, sans parentheses. See merco2 1501 for another axiom of equal length. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1 (((((φψ) → (χ → ⊥ )) → θ) → τ) → ((τφ) → (χφ)))

Proof of Theorem merco1
StepHypRef Expression
1 ax-1 5 . . . . . 6 χ → (¬ θ → ¬ χ))
2 falim 1328 . . . . . 6 ( ⊥ → (¬ θ → ¬ χ))
31, 2ja 153 . . . . 5 ((χ → ⊥ ) → (¬ θ → ¬ χ))
43imim2i 13 . . . 4 (((φψ) → (χ → ⊥ )) → ((φψ) → (¬ θ → ¬ χ)))
54imim1i 54 . . 3 ((((φψ) → (¬ θ → ¬ χ)) → θ) → (((φψ) → (χ → ⊥ )) → θ))
65imim1i 54 . 2 (((((φψ) → (χ → ⊥ )) → θ) → τ) → ((((φψ) → (¬ θ → ¬ χ)) → θ) → τ))
7 meredith 1404 . 2 (((((φψ) → (¬ θ → ¬ χ)) → θ) → τ) → ((τφ) → (χφ)))
86, 7syl 15 1 (((((φψ) → (χ → ⊥ )) → θ) → τ) → ((τφ) → (χφ)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ⊥ wfal 1317 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 177  df-tru 1319  df-fal 1320 This theorem is referenced by:  merco1lem1  1479  retbwax2  1481  merco1lem2  1482  merco1lem4  1484  merco1lem5  1485  merco1lem6  1486  merco1lem7  1487  merco1lem10  1491  merco1lem11  1492  merco1lem12  1493  merco1lem13  1494  merco1lem14  1495  merco1lem16  1497  merco1lem17  1498  merco1lem18  1499  retbwax1  1500
 Copyright terms: Public domain W3C validator