Proof of Theorem retbwax2
| Step | Hyp | Ref
| Expression |
| 1 | | merco1lem1 1479 |
. . . 4
⊢ (((((φ → φ) → φ) → (φ → ⊥ )) → φ) → ( ⊥ → φ)) |
| 2 | | merco1 1478 |
. . . 4
⊢ ((((((φ → φ) → φ) → (φ → ⊥ )) → φ) → ( ⊥ → φ)) → ((( ⊥ → φ) → (φ → φ)) → (φ → (φ → φ)))) |
| 3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((( ⊥ →
φ) → (φ → φ)) → (φ → (φ → φ))) |
| 4 | | merco1 1478 |
. . . 4
⊢ (((((φ → (φ → φ)) → (φ → ⊥ )) → (φ → ⊥ )) → ⊥ ) → ((
⊥ → φ) → (φ → φ))) |
| 5 | | merco1 1478 |
. . . 4
⊢ ((((((φ → (φ → φ)) → (φ → ⊥ )) → (φ → ⊥ )) → ⊥ ) → ((
⊥ → φ) → (φ → φ))) → (((( ⊥ → φ) → (φ → φ)) → (φ → (φ → φ))) → (φ → (φ → (φ → φ))))) |
| 6 | 4, 5 | ax-mp 5 |
. . 3
⊢ (((( ⊥ →
φ) → (φ → φ)) → (φ → (φ → φ))) → (φ → (φ → (φ → φ)))) |
| 7 | 3, 6 | ax-mp 5 |
. 2
⊢ (φ → (φ → (φ → φ))) |
| 8 | | merco1lem1 1479 |
. . . 4
⊢ (((((ψ → φ) → φ) → (φ → ⊥ )) → φ) → ( ⊥ → φ)) |
| 9 | | merco1 1478 |
. . . 4
⊢ ((((((ψ → φ) → φ) → (φ → ⊥ )) → φ) → ( ⊥ → φ)) → ((( ⊥ → φ) → (ψ → φ)) → (φ → (ψ → φ)))) |
| 10 | 8, 9 | ax-mp 5 |
. . 3
⊢ ((( ⊥ →
φ) → (ψ → φ)) → (φ → (ψ → φ))) |
| 11 | | merco1 1478 |
. . . 4
⊢ (((((φ → (ψ → φ)) → (ψ → ⊥ )) → ((φ → (φ → (φ → φ))) → ⊥ )) → ⊥ ) →
(( ⊥ → φ) → (ψ → φ))) |
| 12 | | merco1 1478 |
. . . 4
⊢ ((((((φ → (ψ → φ)) → (ψ → ⊥ )) → ((φ → (φ → (φ → φ))) → ⊥ )) → ⊥ ) →
(( ⊥ → φ) → (ψ → φ))) → (((( ⊥ → φ) → (ψ → φ)) → (φ → (ψ → φ))) → ((φ → (φ → (φ → φ))) → (φ → (ψ → φ))))) |
| 13 | 11, 12 | ax-mp 5 |
. . 3
⊢ (((( ⊥ →
φ) → (ψ → φ)) → (φ → (ψ → φ))) → ((φ → (φ → (φ → φ))) → (φ → (ψ → φ)))) |
| 14 | 10, 13 | ax-mp 5 |
. 2
⊢ ((φ → (φ → (φ → φ))) → (φ → (ψ → φ))) |
| 15 | 7, 14 | ax-mp 5 |
1
⊢ (φ → (ψ → φ)) |