NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  luk-3 GIF version

Theorem luk-3 1422
Description: 3 of 3 axioms for propositional calculus due to Lukasiewicz, derived from Meredith's sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
luk-3 (φ → (¬ φψ))

Proof of Theorem luk-3
StepHypRef Expression
1 merlem11 1417 . 2 ((¬ φ → (¬ φψ)) → (¬ φψ))
2 merlem1 1407 . 2 (((¬ φ → (¬ φψ)) → (¬ φψ)) → (φ → (¬ φψ)))
31, 2ax-mp 5 1 (φ → (¬ φψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  luklem2  1424  luklem3  1425
  Copyright terms: Public domain W3C validator