New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merlem10 | GIF version |
Description: Step 19 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merlem10 | ⊢ ((φ → (φ → ψ)) → (θ → (φ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-meredith 1406 | . 2 ⊢ (((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) | |
2 | ax-meredith 1406 | . . 3 ⊢ ((((((φ → ψ) → φ) → (¬ φ → ¬ θ)) → φ) → φ) → ((φ → (φ → ψ)) → (θ → (φ → ψ)))) | |
3 | merlem9 1415 | . . 3 ⊢ (((((((φ → ψ) → φ) → (¬ φ → ¬ θ)) → φ) → φ) → ((φ → (φ → ψ)) → (θ → (φ → ψ)))) → ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (θ → (φ → ψ))))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (θ → (φ → ψ)))) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ((φ → (φ → ψ)) → (θ → (φ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
This theorem is referenced by: merlem11 1417 |
Copyright terms: Public domain | W3C validator |