| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > merlem11 | GIF version | ||
| Description: Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merlem11 | ⊢ ((φ → (φ → ψ)) → (φ → ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-meredith 1406 | . 2 ⊢ (((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) | |
| 2 | merlem10 1416 | . . 3 ⊢ ((φ → (φ → ψ)) → ((φ → (φ → ψ)) → (φ → ψ))) | |
| 3 | merlem10 1416 | . . 3 ⊢ (((φ → (φ → ψ)) → ((φ → (φ → ψ)) → (φ → ψ))) → ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (φ → ψ)))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (φ → ψ))) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ ((φ → (φ → ψ)) → (φ → ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
| This theorem is referenced by: merlem12 1418 merlem13 1419 luk-2 1421 luk-3 1422 |
| Copyright terms: Public domain | W3C validator |