New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > merlem11 | GIF version |
Description: Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merlem11 | ⊢ ((φ → (φ → ψ)) → (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-meredith 1406 | . 2 ⊢ (((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) | |
2 | merlem10 1416 | . . 3 ⊢ ((φ → (φ → ψ)) → ((φ → (φ → ψ)) → (φ → ψ))) | |
3 | merlem10 1416 | . . 3 ⊢ (((φ → (φ → ψ)) → ((φ → (φ → ψ)) → (φ → ψ))) → ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (φ → ψ)))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((((φ → φ) → (¬ φ → ¬ φ)) → φ) → φ) → ((φ → φ) → (φ → φ))) → ((φ → (φ → ψ)) → (φ → ψ))) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ((φ → (φ → ψ)) → (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-meredith 1406 |
This theorem is referenced by: merlem12 1418 merlem13 1419 luk-2 1421 luk-3 1422 |
Copyright terms: Public domain | W3C validator |