Proof of Theorem merlem13
Step | Hyp | Ref
| Expression |
1 | | merlem12 1418 |
. . . . 5
⊢ (((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) |
2 | | merlem12 1418 |
. . . . . . . 8
⊢ (((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ) |
3 | | merlem5 1411 |
. . . . . . . 8
⊢ ((((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ) → (¬ ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ)) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ (¬ ¬
((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ) |
5 | | merlem6 1412 |
. . . . . . 7
⊢ ((¬ ¬
((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ) → ((((¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ψ) → (¬ ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)))) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢ ((((¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ψ) → (¬ ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) |
7 | | ax-meredith 1406 |
. . . . . 6
⊢ (((((¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ψ) → (¬ ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → ((((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)))) |
8 | 6, 7 | ax-mp 5 |
. . . . 5
⊢ ((((θ → (¬ ¬ χ → χ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) |
9 | 1, 8 | ax-mp 5 |
. . . 4
⊢ (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) |
10 | | merlem6 1412 |
. . . 4
⊢ ((¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ)) → ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ))) |
11 | 9, 10 | ax-mp 5 |
. . 3
⊢ ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ)) |
12 | | merlem11 1417 |
. . 3
⊢ (((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ)) → ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ)) |
13 | 11, 12 | ax-mp 5 |
. 2
⊢ ((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ) |
14 | | ax-meredith 1406 |
. 2
⊢ (((((ψ → ψ) → (¬ φ → ¬ ((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ))) → φ) → φ) → ((φ → ψ) → (((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ψ))) |
15 | 13, 14 | ax-mp 5 |
1
⊢ ((φ → ψ) → (((θ → (¬ ¬ χ → χ)) → ¬ ¬ φ) → ψ)) |