NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  merlem6 GIF version

Theorem merlem6 1412
Description: Step 12 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merlem6 (χ → (((ψχ) → φ) → (θφ)))

Proof of Theorem merlem6
StepHypRef Expression
1 merlem4 1410 . 2 ((ψχ) → (((ψχ) → φ) → (θφ)))
2 merlem3 1409 . 2 (((ψχ) → (((ψχ) → φ) → (θφ))) → (χ → (((ψχ) → φ) → (θφ))))
31, 2ax-mp 5 1 (χ → (((ψχ) → φ) → (θφ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-meredith 1406
This theorem is referenced by:  merlem7  1413  merlem9  1415  merlem13  1419
  Copyright terms: Public domain W3C validator