NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpani GIF version

Theorem mpani 657
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpani.1 ψ
mpani.2 (φ → ((ψ χ) → θ))
Assertion
Ref Expression
mpani (φ → (χθ))

Proof of Theorem mpani
StepHypRef Expression
1 mpani.1 . . 3 ψ
21a1i 10 . 2 (φψ)
3 mpani.2 . 2 (φ → ((ψ χ) → θ))
42, 3mpand 656 1 (φ → (χθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  mp2ani  659
  Copyright terms: Public domain W3C validator