New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpand | GIF version |
Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpand.1 | ⊢ (φ → ψ) |
mpand.2 | ⊢ (φ → ((ψ ∧ χ) → θ)) |
Ref | Expression |
---|---|
mpand | ⊢ (φ → (χ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpand.1 | . 2 ⊢ (φ → ψ) | |
2 | mpand.2 | . . 3 ⊢ (φ → ((ψ ∧ χ) → θ)) | |
3 | 2 | ancomsd 440 | . 2 ⊢ (φ → ((χ ∧ ψ) → θ)) |
4 | 1, 3 | mpan2d 655 | 1 ⊢ (φ → (χ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mpani 657 mp2and 660 ecase2d 906 peano5 4410 sfinltfin 4536 vfinspss 4552 fvopab3ig 5388 ovig 5598 ncssfin 6152 |
Copyright terms: Public domain | W3C validator |